MapReduce提交到Yarn上大体执行流程

  1. 启动申请提交一个job(wordcount.jar和程序中的配置参数和数据切片规划文件)运行进程为runjar
  2. ResouceManager 会在一台节点NodeManager上先启动客户提交的wordcount.jar的主管进程MRAppMasster
  3. 由主管进程(MRAppMasster)根据启动规则启动mapTask任务(yarnChild进程).如果所有mapTask任务运行结束.MRAppMasster进程会启动Reduce Task任务(yarnChild进程)
时间: 2024-10-15 16:21:34

MapReduce提交到Yarn上大体执行流程的相关文章

MapReduce框架在Yarn上的具体解释

MapReduce任务解析 在YARN上一个MapReduce任务叫做一个Job. 一个Job的主程序在MapReduce框架上实现的应用名称叫MRAppMaster. MapReduce任务的Timeline 这是一个MapReduce作业运行时间: Map 阶段:依据数据块会运行多个Map Task Reduce 阶段:依据配置项会运行多个Reduce Task 为提高Shuffle效率Reduce阶段会在Map阶段结束之前就開始.(直到全部MapTask完毕之后ReduceTask才干完毕

MapReduce 学习6 ---- hadoop2提交到Yarn: Mapreduce执行过程分析

hadoop2提交到Yarn: JOB提交过程 http://www.aboutyun.com/forum.php?mod=viewthread&tid=9366&highlight=hadoop2%CC%E1%BD%BB%B5%BDYarn hadoop2提交到Yarn: Map执行过程 http://www.aboutyun.com/forum.php?mod=viewthread&tid=9370&highlight=hadoop2%CC%E1%BD%BB%B5%BD

Spark(六)Spark任务提交方式和执行流程

一.Spark中的基本概念 (1)Application:表示你的应用程序 (2)Driver:表示main()函数,创建SparkContext.由SparkContext负责与ClusterManager通信,进行资源的申请,任务的分配和监控等.程序执行完毕后关闭SparkContext (3)Executor:某个Application运行在Worker节点上的一个进程,该进程负责运行某些task,并且负责将数据存在内存或者磁盘上.在Spark on Yarn模式下,其进程名称为 Coar

MapReduce与Yarn 的详细工作流程分析

MapReduce详细工作流程之Map阶段 如上图所示 首先有一个200M的待处理文件 切片:在客户端提交之前,根据参数配置,进行任务规划,将文件按128M每块进行切片 提交:提交可以提交到本地工作环境或者Yarn工作环境,本地只需要提交切片信息和xml配置文件,Yarn环境还需要提交jar包:本地环境一般只作为测试用 提交时会将每个任务封装为一个job交给Yarn来处理(详细见后边的Yarn工作流程介绍),计算出MapTask数量(等于切片数量),每个MapTask并行执行 MapTask中执

016_笼统概述MapReduce执行流程结合wordcount程序

一.map任务处理 1 .读取输入文件内容,解析成key.value对.对输入文件的每一行,解析成key.value对.每一个键值对调用一次map函数. 2 .写自己的逻辑,对输入的key.value处理,转换成新的key.value输出.3. 对输出的key.value进行分区.4 .对不同分区的数据,按照key进行排序.分组.相同key的value放到一个集合中.5 .(可选)分组后的数据进行归约. 二.reduce任务处理 1.对多个map任务的输出,按照不同的分区,通过网络copy到不同

Mapreduce提交YARN集群运行

Eclipse项目打包1.export2.通过maven打包,切入到项目目录下执行命令mvn clean package Mapreduce提交YARN集群运行 将jar包传到hadoop目录下运行格式:bin/hadoop jar  jar包名   包名(代码的包名).类名 +参数(输入路径输出路径)就可以在集群上运行了 原文地址:https://www.cnblogs.com/libin123/p/10330330.html

Hadoop YARN上运行MapReduce程序

(1)配置集群 (a)配置hadoop-2.7.2/etc/hadoop/yarn-env.sh 配置一下JAVA_HOME export JAVA_HOME=/home/hadoop/bigdatasoftware/jdk1.8.0_161 (b)配置yarn-site.xml <!-- reducer获取数据的方式 --> <property> <name>yarn.nodemanager.aux-services</name> <value>

在eclipse上提交任务到集群执行

win7下eclipse远程开发hadoop程序,分为两种: (1)运行[Run As] Java Application, 打包程序为jar,上传集群执行(这里不做解释) (2)运行[Run As] Run on Hadoop 重点来说说Run on Hadoop这种方式,搭建好eclipse远程开发环境,执行Run on Hadoop,程序成功了,心里窃喜,却发现是这个样子: 我明明设置job.setNumReduceTasks(6),最终本应该有6个reduce输出,怎么成了一个? 发现这

spark执行在yarn上executor内存不足异常ERROR YarnScheduler: Lost executor 542 on host-bigdata3: Container marked as failed: container_e40_1550646084627_1007653_01_000546 on host: host-bigdata3. Exit status: 143.

当spark跑在yarn上时 单个executor执行时,数据量过大时会导致executor的memory不足而使得rdd  最后lost,最终导致任务执行失败 其中会抛出如图异常信息 如图中异常所示 对应解决方法可以加上对应的参数调优(这个配置可以在总的处理数据量在几百TB或者1~3PB级别的数据处理时解决executor-memory不足问题) --num-executors=512 --executor-cores=8 --executor-memory=32g --driver-memo