Python机器学习库sciki-earn实践

用Anaconda的spyder:新建train_test.py

#!usr/bin/env python
#-*- coding: utf-8 -*-  

import sys
import os
import time
from sklearn import metrics
import numpy as np
import cPickle as pickle  

reload(sys)
sys.setdefaultencoding(‘utf8‘)  

# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
    from sklearn.naive_bayes import MultinomialNB
    model = MultinomialNB(alpha=0.01)
    model.fit(train_x, train_y)
    return model  

# KNN Classifier
def knn_classifier(train_x, train_y):
    from sklearn.neighbors import KNeighborsClassifier
    model = KNeighborsClassifier()
    model.fit(train_x, train_y)
    return model  

# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
    from sklearn.linear_model import LogisticRegression
    model = LogisticRegression(penalty=‘l2‘)
    model.fit(train_x, train_y)
    return model  

# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
    from sklearn.ensemble import RandomForestClassifier
    model = RandomForestClassifier(n_estimators=8)
    model.fit(train_x, train_y)
    return model  

# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
    from sklearn import tree
    model = tree.DecisionTreeClassifier()
    model.fit(train_x, train_y)
    return model  

# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
    from sklearn.ensemble import GradientBoostingClassifier
    model = GradientBoostingClassifier(n_estimators=200)
    model.fit(train_x, train_y)
    return model  

# SVM Classifier
def svm_classifier(train_x, train_y):
    from sklearn.svm import SVC
    model = SVC(kernel=‘rbf‘, probability=True)
    model.fit(train_x, train_y)
    return model  

# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
    from sklearn.grid_search import GridSearchCV
    from sklearn.svm import SVC
    model = SVC(kernel=‘rbf‘, probability=True)
    param_grid = {‘C‘: [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], ‘gamma‘: [0.001, 0.0001]}
    grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
    grid_search.fit(train_x, train_y)
    best_parameters = grid_search.best_estimator_.get_params()
    for para, val in best_parameters.items():
        print para, val
    model = SVC(kernel=‘rbf‘, C=best_parameters[‘C‘], gamma=best_parameters[‘gamma‘], probability=True)
    model.fit(train_x, train_y)
    return model  

def read_data(data_file):
    import gzip
    f = gzip.open(data_file, "rb")
    train, val, test = pickle.load(f)
    f.close()
    train_x = train[0]
    train_y = train[1]
    test_x = test[0]
    test_y = test[1]
    return train_x, train_y, test_x, test_y  

if __name__ == ‘__main__‘:
    data_file = "mnist.pkl.gz"
    thresh = 0.5
    model_save_file = None
    model_save = {}  

    test_classifiers = [‘NB‘, ‘KNN‘, ‘LR‘, ‘RF‘, ‘DT‘, ‘SVM‘, ‘GBDT‘]
    classifiers = {‘NB‘:naive_bayes_classifier,
                  ‘KNN‘:knn_classifier,
                   ‘LR‘:logistic_regression_classifier,
                   ‘RF‘:random_forest_classifier,
                   ‘DT‘:decision_tree_classifier,
                  ‘SVM‘:svm_classifier,
                ‘SVMCV‘:svm_cross_validation,
                 ‘GBDT‘:gradient_boosting_classifier
    }  

    print ‘reading training and testing data...‘
    train_x, train_y, test_x, test_y = read_data(data_file)
    num_train, num_feat = train_x.shape
    num_test, num_feat = test_x.shape
    is_binary_class = (len(np.unique(train_y)) == 2)
    print ‘******************** Data Info *********************‘
    print ‘#training data: %d, #testing_data: %d, dimension: %d‘ % (num_train, num_test, num_feat)  

    for classifier in test_classifiers:
        print ‘******************* %s ********************‘ % classifier
        start_time = time.time()
        model = classifiers[classifier](train_x, train_y)
        print ‘training took %fs!‘ % (time.time() - start_time)
        predict = model.predict(test_x)
        if model_save_file != None:
            model_save[classifier] = model
        if is_binary_class:
            precision = metrics.precision_score(test_y, predict)
            recall = metrics.recall_score(test_y, predict)
            print ‘precision: %.2f%%, recall: %.2f%%‘ % (100 * precision, 100 * recall)
        accuracy = metrics.accuracy_score(test_y, predict)
        print ‘accuracy: %.2f%%‘ % (100 * accuracy)   

    if model_save_file != None:
        pickle.dump(model_save, open(model_save_file, ‘wb‘))  

结果:

reading training and testing data...
******************** Data Info *********************
#training data: 50000, #testing_data: 10000, dimension: 784
******************* NB ********************
training took 0.558000s!
accuracy: 83.69%
******************* KNN ********************
training took 29.467000s!
accuracy: 96.64%
******************* LR ********************
training took 104.605000s!
accuracy: 91.98%
******************* RF ********************
training took 4.401000s!
accuracy: 93.91%
******************* DT ********************
training took 26.923000s!
accuracy: 87.07%
******************* SVM ********************
training took 3831.564000s!
accuracy: 94.35%
******************* GBDT ********************

在这个数据集中,由于数据分布的团簇性较好(如果对这个数据库了解的话,看它的t-SNE映射图就可以看出来。由于任务简单,其在deep learning界已被认为是toy dataset),因此KNN的效果不赖。GBDT是个非常不错的算法,在kaggle等大数据比赛中,状元探花榜眼之列经常能见其身影。

时间: 2024-10-09 00:22:03

Python机器学习库sciki-earn实践的相关文章

Python机器学习库资料汇总

声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化.线性代数.积分.插值.特殊函数.快速傅里叶变换.信号处理和图像处理.常微分方程求解和其他科

常用python机器学习库总结

开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的.如果仔细留意微博和论坛,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了"Python机器学习库",不过总感觉缺少点什么.最近流行一个词,全栈工

[resource]Python机器学习库

reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,S

[转载]Python机器学习库

Python 在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化.线性代数.积分.插值.特殊函数.快速傅里叶变换.信号处理和图像处理.常微分方程求解和其他科学与工程中常用的计算.其功能与

Python 机器学习库 NumPy 教程

0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数.如果接触过matlab.scilab,那么numpy很好入手. 1 安装 pip install numpy 在NumPy中,维度称之为axis(复数是axes),维度的数量称之为rank. (通用做法import numpu as np 简单输入) 2 多维数组 NumPy

Python机器学习库scikit-learn实践

原文:http://blog.csdn.net/zouxy09/article/details/48903179 一.概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出.当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘.随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持.改进和推广. 以

2018年最受欢迎Python机器学习库介绍

Python是一种面向对象的解释型计算机程序设计语言,具有丰富和强大的库,再加上其简单.易学.速度快.开源免费.可移植性.可扩展性以及面向对象的特点,Python成为2017年最受欢迎的最受欢迎的编程语言! 人工智能是当前最热门话题之一,机器学习技术是人工智能实现必备技能,Python编程语言含有最有用的机器学习工具和库,以下是Python开发工程师必知的十大机器学习库! 一.Scikit-Learn 在机器学习和数据挖掘的应用中,Scikit-Learn是一个功能强大的Python包,我们可以

【机器学习】--Python机器学习库之Numpy

一.前述 NumPy(Numerical Python的缩写)是一个开源的Python科学计算库.使用NumPy,就可以很自然地使用数组和矩阵. NumPy包含很多实用的数学函数,涵盖线性代数运算.傅里叶变换和随机数生成等功能. 这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架. 二.具体应用 1.背景--为什么使用Numpy? a) 便捷: 对于同样的数值计算任务,使用

[Machine Learning]Python机器学习库

Numpy: numpy提供两种基本的对象:ndarray和ufunc,ndarray是存储单一数据类型的多为数组,ufunc是能够对数组进行操作的函数. 创建数组: a = numpy.array([1, 2, 3, 4]) b = np.array([[1, 2, 3, 4], [4, 5, 6, 7]]) 数组的形状可以通过其shape属性获得,它是一个描述数组各个轴长度的元组: 1 a.shape 2 # 结果: (4,) 3 b.shape 4 # 结果: (2, 4) 在保持数组元素