hdu1588---Gauss Fibonacci(矩阵,线性递推)

根据题意:最后就是求f(b) + f(k + b) + f(2 * k + b) + …+ f((n-1) * k + b)

显然f(b) = A^b

其中A =

1 1

1 0

所以sum(n - 1) = A^b(E + A^ k + A ^(2 * k) + … + A ^((n - 1) * k)

设D = A^k

sum(n-1) = A^b(E + D + D ^ 2 + … + D ^(n - 1))

括号里的部分就可以二分递归求出来了

而单个矩阵就可以用矩阵快速幂求出来

/*************************************************************************
    > File Name: hdu1588.cpp
    > Author: ALex
    > Mail: [email protected]
    > Created Time: 2015年03月12日 星期四 18时25分07秒
 ************************************************************************/

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

LL mod, k, b;

class MARTIX
{
    public:
        LL mat[3][3];
        MARTIX();
        MARTIX operator * (const MARTIX &b)const;
        MARTIX operator + (const MARTIX &b)const;
        MARTIX& operator = (const MARTIX &b);
}A, E, D;

MARTIX :: MARTIX()
{
    memset (mat, 0, sizeof(mat));
}

MARTIX MARTIX :: operator * (const MARTIX &b)const
{
    MARTIX ret;
    for (int i = 0; i < 2; ++i)
    {
        for (int j = 0; j < 2; ++j)
        {
            for (int k = 0; k < 2; ++k)
            {
                ret.mat[i][j] += this -> mat[i][k] * b.mat[k][j];
                ret.mat[i][j] %= mod;
            }
        }
    }
    return ret;
}

MARTIX MARTIX :: operator + (const MARTIX &b)const
{
    MARTIX ret;
    for (int i = 0; i < 2; ++i)
    {
        for (int j = 0; j < 2; ++j)
        {
            ret.mat[i][j] = this -> mat[i][j] + b.mat[i][j];
            ret.mat[i][j] %= mod;
        }
    }
    return ret;
}

MARTIX& MARTIX :: operator = (const MARTIX &b)
{
    for (int i = 0; i < 2; ++i)
    {
        for (int j = 0; j < 2; ++j)
        {
            this -> mat[i][j] = b.mat[i][j];
        }
    }
    return *this;
}

MARTIX fastpow(MARTIX ret, LL n)
{
    MARTIX ans;
    ans.mat[0][0] = ans.mat[1][1] = 1;
    while (n)
    {
        if (n & 1)
        {
            ans = ans * ret;
        }
        n >>= 1;
        ret = ret * ret;
    }
    return ans;
}

void Debug(MARTIX A)
{
    for (int i = 0; i < 2; ++i)
    {
        for (int j = 0; j < 2; ++j)
        {
            printf("%lld ", A.mat[i][j]);
        }
        printf("\n");
    }
}

MARTIX binseach(LL n)
{
    if (n == 1)
    {
        return D;
    }
    MARTIX nxt = binseach(n >> 1);
    MARTIX B = fastpow(D, n / 2);
    B = B + E;
    nxt = nxt * B;
    if (n & 1)
    {
        MARTIX C = fastpow(D, n);
        nxt = nxt + C;
    }
    return nxt;
}

int main()
{
    LL n;
    E.mat[0][0] = E.mat[1][1] = 1;
    A.mat[0][0] = A.mat[0][1] = A.mat[1][0] = 1;
//  Debug(A);
    while (~scanf("%lld%lld%lld%lld", &k, &b, &n, &mod))
    {
        if (n == 1)
        {
            MARTIX x = fastpow(A, b);
            printf("%lld\n", x.mat[0][1]);
            continue;
        }
        D = fastpow(A, k);
        MARTIX ans = binseach(n - 1);
        ans = ans + E;
        MARTIX base = fastpow(A, b);
        ans = base * ans;
//      Debug(ans);
        printf("%lld\n", ans.mat[0][1]);
    }
    return 0;
}
时间: 2024-07-31 14:33:41

hdu1588---Gauss Fibonacci(矩阵,线性递推)的相关文章

利用Cayley-Hamilton theorem 优化矩阵线性递推

平时有关线性递推的题,很多都可以利用矩阵乘法来解k决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方法. Cayley-Hamilton theorem: 记矩阵A的特征多项式为f(x). 则有f(A)=0. 证明可以看 维基百科 https://en.wikipedia.org/wiki/Cayley–Hamilton_theorem#A_direct_algebraic_proof 另外我在

HDU 3117 Fibonacci Numbers(Fibonacci矩阵加速递推+公式)

题目意思很简单:求第n个Fibonacci数,如果超过八位输出前四位和后四位中间输出...,否则直接输出Fibonacci数是多少. 后四位很好求,直接矩阵加速递推对10000取余的结果就是. 前四位搜了一下:http://blog.csdn.net/xieqinghuang/article/details/7789908 Fibonacci的通项公式,对,fibonacci数是有通项公式的-- f(n)=1/sqrt(5)(((1+sqrt(5))/2)^n+((1-sqrt(5))/2)^n

多校第九场:贪心+矩阵快速幂中间优化+线性递推&amp;线段树递推

HDU 4968 Improving the GPA 思路:贪心的搞吧!比赛的时候想了好久,然后才发现了点规律,然后乱搞1A. 因为贪心嘛!大的情况就是刚开始每个人的分数都是最大的最小值,即绩点4.0的最低分数85,然后最后一个数设为剩余的分数,然后如果小于60就从第一个分数补到这个分数来,然后最后一个分数还小于60,那就用第二个补--依次往下搞,那时我也不知道这样就搞出答案了,我还没证明这个对不对呢,哈哈. 小的情况:小的情况就是先假设每个人都是绩点最小的最大分数,即绩点2.0的最大分数69,

矩阵乘法优化线性递推

矩阵乘法是线性代数中一块很重要的内容.矩阵乘法的定义很奇怪[1],但正是这种奇怪的性质,让矩阵乘法成为在除了线性代数和其衍生学科(还有诸如矩阵力学之类)外最广泛使用的关于矩阵变换的应用.(什么?FFT不属于矩阵变换吧...) 注: [1]: 矩阵乘法有另外的很多定义,如未说明,指的是中间不带符号的矩阵乘法,即一般矩阵乘积.另有 标量乘积(即所有数乘上一个固定的数),阿达马乘积等,没有那么诡异,但是在大多数问题的用途上也不大. 你不会矩阵乘法?没关系,下一篇会写到的 矩阵乘法的本质 矩阵乘法的本质

HDU 5863 cjj&#39;s string game ( 16年多校10 G 题、矩阵快速幂优化线性递推DP )

题目链接 题意 : 有种不同的字符,每种字符有无限个,要求用这k种字符构造两个长度为n的字符串a和b,使得a串和b串的最长公共部分长度恰为m,问方案数 分析 : 直觉是DP 不过当时看到 n 很大.但是 m 很小的时候 发现此题DP并不合适.于是想可能是某种组合数学的问题可以直接公式算 看到题解的我.恍然大悟.对于这种数据.可以考虑一下矩阵快速幂优化的DP 首先要想到线性递推的 DP 式子 最直观的想法就是 dp[i][j] = 到第 i 个位置为止.前面最长匹配长度为 j 的方案数 但是如果仔

矩阵乘法递推的优化艺术

对于一个线性递推式,求它第项的值,通常的做法是先构造一个的矩阵,然后在时间内求出. 其实,由于这个矩阵的特殊性,可以将时间优化到.接下来我会以一个题目来讲解矩阵乘法递推的优化. 题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1229 题意:设,求的值.其中,和 . 前言:本题如果用普通的矩阵做法,很明显会TLE.那么我们要对这个特殊的矩阵进行时间上的优化. 分析:本题主要可用两种方法解决,分别是错位相减和矩阵乘法

HDU - 6172:Array Challenge (BM线性递推)

题意:给出,三个函数,h,b,a,然后T次询问,每次给出n,求sqrt(an); 思路:不会推,但是感觉a应该是线性的,这个时候我们就可以用BM线性递推,自己求出前几项,然后放到模板里,就可以求了. 数据范围在1e15,1000组都可以秒过. 那么主要的问题就是得确保是线性的,而且得求出前几项. #include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per

矩阵经典题目七:Warcraft III 守望者的烦恼(矩阵加速递推)

https://www.vijos.org/p/1067 很容易推出递推式f[n] = f[n-1]+f[n-2]+......+f[n-k]. 构造矩阵的方法:构造一个k*k的矩阵,其中右上角的(k-1)*(k-1)的矩阵是单位矩阵,第k行的每个数分别对应f[n-1],f[n-2],,f[n-k]的系数.然后构造一个k*1的矩阵,它的第i行代表f[i],是经过直接递推得到的.设ans[][]是第一个矩阵的n-k次幂乘上第二个矩阵,f[n]就是ans[k][1]. 注意:用__int64 #in

[HDOJ6172] Array Challenge(线性递推,黑科技)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6172 题意:给一堆东西,就是求个线性递推式,求第n项%1e9+7 杜教板真牛逼啊,线性递推式用某特征值相关的论文板,打表前几项丢进去就出结果了. 1 #include <bits/stdc++.h> 2 using namespace std; 3 4 typedef long long ll; 5 #define rep(i,a,n) for (ll i=a;i<n;i++) 6 #def