使用JVMTI获取Java多线程程序指令执行次序

使用JVMTI获取Java多线程程序指令执行次序



在Java多线程程序中,由于线程调度,指令间的次序在每次运行时都可能不相同,有时候,我们需要得到指令次序,用来分析程序的行为。这样细粒度的底层行为用一般方法很难完成,我们需要借助 JVM Tool Interface,即JVMTI,来帮助我们获取Java虚拟机执行时的信息。本文先介绍编写JVMTI程序的基本框架,然后介绍如何使用JVMTI来获取多线程程序中指令之间的次序。

JVMTI简介

JVMTI是用于编写开发与监视工具的编程接口,使用它可以检查并控制运行于Java虚拟机上的程序。使用它可以完成性能分析,调试,监视(monitoring),线程分析,覆盖分析(coverage analysis)等工具。

使用JVMTI可以编写出一个agent。在运行Java程序时,指定这个agent,那么当虚拟机运行程序时,如果agent中指定的一些事件发生,虚拟机就会调用agent中相应的回调函数。JVMTI提供了一系列可以指定的事件,以及获取虚拟机中信息的函数接口。

JVMTI基本编程方法

编写agent

  • 头文件 agent程序中,需要包含 jvmti.h头文件,才能使用JVMTI中提供的接口。
#include <jvmti.h>
  • 基本事件 和agent有关的两个基本事件是agent的启动与关闭,我们需要自己编写与启动与关闭相关的函数,这样,虚拟机才知道启动与关闭agent时,都需要做些什么。

    与启动相关的函数有两个,如果你的agent在虚拟机处于OnLoad阶段时启动,会调用Agent_OnLoad函数,如果你的agent在虚拟机处于Live阶段时启动,会调用Agent_OnAttach函数。

    我的理解是,如果你的agent想要全程监视一个程序的运行,就编写Agent_OnLoad,并在启动虚拟机时指定agent。如果你的agent想获取一个已经在运行的虚拟机中程序的信息,就编写Agent_OnAttach

    两个函数的原型如下:

JNIEXPORT jint JNICALL
Agent_OnLoad(JavaVM *vm, char *options, void *reserved)
JNIEXPORT jint JNICALL
Agent_OnAttach(JavaVM* vm, char *options, void *reserved)

与agent关闭相关的函数是Agent_OnUnload,当agent要被关闭时,虚拟机会调用这个函数,函数原型为:

JNIEXPORT void JNICALL
Agent_OnUnload(JavaVM *vm)
  • 程序基本框架

主要的内容框架在Agent_OnLoad中编写:

1 获取jvm环境

/* get env */
jvmtiEnv *jvmti = NULL;
jvmtiError error;

error = (*jvm)->GetEnv(jvm, (void **)&jvmti, JVMTI_VERSION);
if (error != JNI_OK) {
    fprintf(stderr, "Couldn‘t get JVMTI environment");
    return JNI_ERR;
}

可以为同一个虚拟机指定多个agent,每个agent都有自己的环境,在指定agent行为前,首先要获取的就是环境信息,后面的操作都是针对这个环境的。另外,JVMTI中的函数都会返回错误代码,在调用函数后,需要检查返回值,以确定函数调用是否成功。不同的函数会返回不同类型的错误码,可自行参阅JVMTI的API。

另外,需要注意,JVMTI程序可以使用C/C++编写,两者在调用函数时略有不同,上面的例子是用C编写,gcc编译。如果你使用C++编写,GetEnv需要这样调用:

error = (jvm)->GetEnv(reinterpret_cast<void**>(&jvmti), JVMTI_VERSION_1_1);

其它函数依次类推。

2 添加capabilities

JVMTI中有很多事件,每个事件都对对应一些Capabilities,如果你想为此事件编写函数,就要开启相应的Capabilities,例如,我们想对 JVMTI_EVENT_SINGLE_STEP 事件编写函数,可以查到,需要开启can_generate_single_step_events

/* add capabilities */]
jvmtiCapabilities capa;
memset(&capa, 0, sizeof(jvmtiCapabilities));
capa.can_generate_single_step_events = 1;
error = (*jvmti)->AddCapabilities(jvmti, &capa);
check_jvmti_error(jvmti, error,         "Unable to get necessary JVMTI capabilities.");

如果开启的Capabilities多于一个,不用声明多个jvmtiCapabilities变量,只需要使用类似

capa.can_generate_single_step_events = 1;

的方式指定就行。

3 指定事件

JVMTI编写的目的是,当虚拟机中一个事件发生时,调用我们为此事件编写的函数。所以我们需要指定哪个事件发生时,通知agent:

/* set events */
error = (*jvmti)->SetEventNotificationMode         (jvmti, JVMTI_ENABLE, JVMTI_EVENT_SINGLE_STEP, NULL);
check_jvmti_error(jvmti, error, "Cannot set event notification");

其中 JVMTI_EVENT_SINGLE_STEP 就是事件代码。

需要特别注意的是,要先开启相关capabilities,然后才能指定事件。

4 设置回调函数

我们还需要为事件指定回调函数,并自行编写回调函数,事件回调函数的接口是由JVMTI指定的,例如JVMTI_EVENT_SINGLE_STEP事件的回调函数原型:

void JNICALL
SingleStep(jvmtiEnv *jvmti_env,
            JNIEnv* jni_env,
            jthread thread,
            jmethodID method,
            jlocation location)

为事件指定回调函数的方法是:

jvmtiEventCallbacks callbacks;

/* add callbacks */
memset(&callbacks, 0, sizeof(callbacks));
callbacks.SingleStep = &callbackSingleStep;
error = (*jvmti)->SetEventCallbacks         (jvmti, &callbacks, (jint)sizeof(callbacks));
check_jvmti_error(jvmti, error, "Canot set jvmti callbacks");

之后,我们需要自己编写 callbackSingleStep函数:

void JNICALL
callbackSingleStep(
    jvmtiEnv *jvmti,
    JNIEnv* jni,
    jthread thread,
    jmethodID method,
    jlocation location) {

}

运行agent

运行agent,通过指定虚拟机参数来设定,例如运行PossibleReordering时:

java -classpath . \
    -agentpath:`pwd`/jvmagent/TraceAgent.so PossibleReordering

其中TraceAgent.so就是编译后生成的agent。

使用JVMTI获取多线程程序指令执行次序

我们知道,在Java虚拟机中的运行时数据区中,每个线程都有它的私有区域,每个线程有自己的PC寄存器,PC寄存器表示线程当前执行的指令在内存中的地址。其实我最初的目的是想得到这个PC的值,但是找了很久都没有找到,然后在JVMTI中找到了类似的概念。

在JVMTI中,介绍单步事件(Single Step Event)时说,当一个线程到达一个新的位置(location)时,单步事件就会产生。单步事件使agent以虚拟机允许的最细粒度,跟踪线程执行。

我们回到单步事件回调函数的原型:

void JNICALL
SingleStep(jvmtiEnv *jvmti_env,
            JNIEnv* jni_env,
            jthread thread,
            jmethodID method,
            jlocation location)

其中的 location 就是新指令的位置。

我们首先来编写一个Java多线程程序,这个程序是 《Java并发编程实战》(Java Concurrency in Practice) 中的一个例子,我做了一点变形:

import java.lang.Thread;

public class PossibleReordering {
    static int x = 0, y = 0;
    static int a = 0, b = 0;

    public static void main(String[] args) throws InterruptedException {

        Thread one = new Thread(new Runnable() {
            public void run() {
                a = 1;
                x = b;
            }
        });

        Thread other = new Thread(new Runnable() {
            public void run() {
                b = 1;
                y = a;
                a = 1;
                x = b;
                a = 1;
                x = b;
                a = 1;
                x = b;
                a = 1;
                x = b;
                a = 1;
                x = b;
                a = 1;
                x = b;
                a = 1;
                x = b;
            }
        });

        one.start();
        other.start();
        one.join();
        other.join();
    }
}

给Thread other多加了一些语句,用以区分两个线程。

这里有一个问题是,我们关心的其实只是两个线程的 run函数中指令的次序,而单步事件会在任何指令执行时,都调用回调函数,这就需要我们在回调函数中,只保留源代码中的两个线程的run函数中的指令的位置,其它的都过滤掉。

我们可以使用JVMTI提供的 GetMethodName 来得到函数名,使用 GetMethodDeclaringClass得到类名,然后通过比较类名和函数名,只保留 run中的指令:

error = (*jvmti)->GetMethodName(         jvmti, method, &method_name, &method_signature, SKIP_GENERIC);

error = (*jvmti)->GetMethodDeclaringClass(          jvmti, method, &declaring_class);

if (strncmp(method_name, "run", 4) == 0   &&       strstr(class_signature, "PossibleReordering") != NULL) {
      printf("%s\t", thread_info.name);
      printf("%s\t", class_signature);
      printf("%lld\t", location);
      printf("%s %lld:%lld\t", method_name, s_location, e_location);
      printf("\n");
}

执行下列命令:

java -classpath . -agentpath:`pwd`/jvmagent/TraceAgent.so=log.txt PossibleReordering

即可得到指令次序信息:

Thread-0	LPossibleReordering$1;	0	run 0:10
Thread-0	LPossibleReordering$1;	1	run 0:10
Thread-1	LPossibleReordering$2;	0	run 0:80
Thread-0	LPossibleReordering$1;	4	run 0:10
Thread-0	LPossibleReordering$1;	7	run 0:10
Thread-0	LPossibleReordering$1;	10	run 0:10
Thread-1	LPossibleReordering$2;	1	run 0:80
Thread-1	LPossibleReordering$2;	4	run 0:80
Thread-1	LPossibleReordering$2;	7	run 0:80
Thread-1	LPossibleReordering$2;	10	run 0:80
Thread-1	LPossibleReordering$2;	11	run 0:80
Thread-1	LPossibleReordering$2;	14	run 0:80
Thread-1	LPossibleReordering$2;	17	run 0:80
Thread-1	LPossibleReordering$2;	20	run 0:80
Thread-1	LPossibleReordering$2;	21	run 0:80
Thread-1	LPossibleReordering$2;	24	run 0:80
Thread-1	LPossibleReordering$2;	27	run 0:80
Thread-1	LPossibleReordering$2;	30	run 0:80
Thread-1	LPossibleReordering$2;	31	run 0:80
Thread-1	LPossibleReordering$2;	34	run 0:80
Thread-1	LPossibleReordering$2;	37	run 0:80
Thread-1	LPossibleReordering$2;	40	run 0:80
Thread-1	LPossibleReordering$2;	41	run 0:80
Thread-1	LPossibleReordering$2;	44	run 0:80
Thread-1	LPossibleReordering$2;	47	run 0:80
Thread-1	LPossibleReordering$2;	50	run 0:80
Thread-1	LPossibleReordering$2;	51	run 0:80
Thread-1	LPossibleReordering$2;	54	run 0:80
Thread-1	LPossibleReordering$2;	57	run 0:80
Thread-1	LPossibleReordering$2;	60	run 0:80
Thread-1	LPossibleReordering$2;	61	run 0:80
Thread-1	LPossibleReordering$2;	64	run 0:80
Thread-1	LPossibleReordering$2;	67	run 0:80
Thread-1	LPossibleReordering$2;	70	run 0:80
Thread-1	LPossibleReordering$2;	71	run 0:80
Thread-1	LPossibleReordering$2;	74	run 0:80
Thread-1	LPossibleReordering$2;	77	run 0:80
Thread-1	LPossibleReordering$2;	80	run 0:80

最终的源代码中,我还输出了线程名,和方法的指令地址范围。

我们可以反编译 PossibleReordering$1 和 PossibleReordering$2,看看相应的指令范围是否可以对应上。

$ javap -c PossibleReordering\$1.class
final class PossibleReordering$1 implements java.lang.Runnable {
  PossibleReordering$1();
    Code:
       0: aload_0       
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return        

  public void run();
    Code:
       0: iconst_1      
       1: putstatic     #2                  // Field PossibleReordering.a:I
       4: getstatic     #3                  // Field PossibleReordering.b:I
       7: putstatic     #4                  // Field PossibleReordering.x:I
      10: return        
}
$ javap -c PossibleReordering\$2.class
Compiled from "PossibleReordering.java"
final class PossibleReordering$2 implements java.lang.Runnable {
  PossibleReordering$2();
    Code:
       0: aload_0       
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return        

  public void run();
    Code:
       0: iconst_1      
       1: putstatic     #2                  // Field PossibleReordering.b:I
       4: getstatic     #3                  // Field PossibleReordering.a:I
       7: putstatic     #4                  // Field PossibleReordering.y:I
      10: iconst_1      
      11: putstatic     #3                  // Field PossibleReordering.a:I
      14: getstatic     #2                  // Field PossibleReordering.b:I
      17: putstatic     #5                  // Field PossibleReordering.x:I
      20: iconst_1      
      21: putstatic     #3                  // Field PossibleReordering.a:I
      24: getstatic     #2                  // Field PossibleReordering.b:I
      27: putstatic     #5                  // Field PossibleReordering.x:I
      30: iconst_1      
      31: putstatic     #3                  // Field PossibleReordering.a:I
      34: getstatic     #2                  // Field PossibleReordering.b:I
      37: putstatic     #5                  // Field PossibleReordering.x:I
      40: iconst_1      
      41: putstatic     #3                  // Field PossibleReordering.a:I
      44: getstatic     #2                  // Field PossibleReordering.b:I
      47: putstatic     #5                  // Field PossibleReordering.x:I
      50: iconst_1      
      51: putstatic     #3                  // Field PossibleReordering.a:I
      54: getstatic     #2                  // Field PossibleReordering.b:I
      57: putstatic     #5                  // Field PossibleReordering.x:I
      60: iconst_1      
      61: putstatic     #3                  // Field PossibleReordering.a:I
      64: getstatic     #2                  // Field PossibleReordering.b:I
      67: putstatic     #5                  // Field PossibleReordering.x:I
      70: iconst_1      
      71: putstatic     #3                  // Field PossibleReordering.a:I
      74: getstatic     #2                  // Field PossibleReordering.b:I
      77: putstatic     #5                  // Field PossibleReordering.x:I
      80: return        
}

可以看出,确实是一个线程的run方法指令范围是 0:10 ,另一个是 0:80,说明我们正确获取了相应指令。

完整的源代码,包含如何编译,运行,可以在我的GitHub中找到:AgentDemo

扩展阅读:

1. JVMTM Tool Interface 文档

2. JVMTI官方教程

3. JVMTI官方Demo:下载后可在目录 jdk1.8.0_05/demo/jvmti/ 下找到多个Demo

时间: 2024-11-06 15:01:25

使用JVMTI获取Java多线程程序指令执行次序的相关文章

java多线程批量执行的时限问题

需求:需要并发执行三个线程,要求在指定的时间内返回结果,如果某个线程超时,则返回为空. 思路:使用ExecutorService的invokeAll(time,timeUint)方法来设置执行时限,该方法返回一个List<Future<T>>,一旦返回后,即取消尚未完成的任务,然后再从list中读取future并调用future.get()方法来获取线程返回的结果,如果future.get()抛出CancellationException 则说明该任务未完成被取消了. <T&

关于java多线程任务执行时共享资源加锁的方式思考

1.加锁方式: 1-1.使用synchronized关键字进行方法或代码块的加锁方式 1-2.使用ReentrantLock类提供的lock()方法的方式 2.代码实现(传统的银行取款存款问题): 2-1.Account.java类:账户类 package com.java.thread; import java.util.concurrent.locks.ReentrantLock; /** * 账户类 * @author steven * */ public class Account {

Java 多线程 锁 存款 取款

http://jameswxx.iteye.com/blog/806968 最近想将java基础的一些东西都整理整理,写下来,这是对知识的总结,也是一种乐趣.已经拟好了提纲,大概分为这几个主题: java线程安全,java垃圾收集,java并发包详细介绍,java profile和jvm性能调优 .慢慢写吧.本人jameswxx原创文章,转载请注明出处,我费了很多心血,多谢 了.关于java线程安全,网上有很多资料,我只想从自己的角度总结对这方面的考虑,有时候写东西是很痛苦的,知道一些东西,但想

Java多线程编程(基础篇)

一.进程和线程的区别: 进程:当前计算机正在运行的程序,进程是cpu分配资源的基本单位,一个进程至少有一个线程. 线程: 计算机中任务调度和最小的执行单元,一个线程也被称为轻量级进程. Java多线程:在单个程序运作的过程中同时运作多个线程,完成不同的工作,称为多线程. 引入线程的好处:Java虚拟机允许应用程序并发的运行多个线程,引入线程可以减少程序并发时的cpu的开销. 二.Java的运行状态图: 初始状态(被创建):创建一个Thread对象,但还未调用start()启动线程时,线程处于初始

java 多线程 获取线程返回结果

我们在使用java多线程编写相关业务代码时,往往有这样一种情况,某个线程依赖于其他线程执行结果. 也就是说,我们需要在一个线程中获取另一个线程的信息.可以分为两种情况,一种是轮询,一种是回调,因为轮询效率很低,所以本文主要介绍回调方法. 回调的主要思想是:线程run方法执行结束时,主动通知main线程,在main线程中做相应处理.通知main线程可以通过调用main方法中的static方法实现. 假定以下场景: 两个线程读取两个不同文件,最后拼接两个文件内容输出. 1.以下是线程代码: 1 pa

Java多线程--让主线程等待所有子线程执行完毕

数据量很大百万条记录,因此考虑到要用多线程并发执行,在写的过程中又遇到问题,我想统计所有子进程执行完毕总共的耗时,在第一个子进程创建前记录当前时间用System.currentTimeMillis()在最后一个子进程结束后记录当前时间,两次一减得到的时间差即为总共的用时,代码如下 Java代码   long tStart = System.currentTimeMillis(); System.out.println(Thread.currentThread().getName() + "开始&

java多线程执行问题

class Demo extends Thread{ public Demo(String name){ super(name); } public void run(){ for(int i=0; i<6; ++i){ System.out.println("i = " + i + "......Thread=" + Thread.currentThread().getName()); try{ Thread.sleep(100); }catch(Inter

Java多线程之后台线程不执行finally

后台线程不执行finally package wzh.daemon; import java.util.concurrent.TimeUnit; class ADaemon implements Runnable { @Override public void run() { try { System.out.println("Starting ADaemon"); TimeUnit.SECONDS.sleep(1); } catch (Exception e) { System.ou

java多线程之从任务中获取返回值

package wzh.test; import java.util.ArrayList; import java.util.concurrent.Callable; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; class TaskWithResult implements Callable<Strin