题意:
给定f1和f2,求fn
分析:
特判f1,f2
当n>=3时使用矩阵快速幂即可( 简单题 )
将公式转化一下 , 可以得到一个变换矩阵
代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define CLR( a, b ) memset( a, b, sizeof(a) ) #define MAT_SIZE 2 #define MOD 1000000007 typedef long long LL; struct Mat { LL mat[MAT_SIZE][MAT_SIZE]; void zero() { for( int i = 0; i < MAT_SIZE; ++i ) for( int j = 0; j < MAT_SIZE; ++j ) mat[i][j] = 0; } void init() { for( int i = 0; i < MAT_SIZE; ++i ) for( int j = 0; j < MAT_SIZE; ++j ) mat[i][j] = ( i == j ); } void setv( int v ) { for( int i = 0; i < MAT_SIZE; ++i ) for( int j = 0; j < MAT_SIZE; ++j ) mat[i][j] = v; } Mat operator*( const Mat &b)const { Mat c; c.zero(); for( int i =0; i < MAT_SIZE; ++i ) for( int j =0; j < MAT_SIZE; ++j ) for( int k = 0; k < MAT_SIZE; ++k ) c.mat[i][j] = ( c.mat[i][j] + mat[i][k] * b.mat[k][j] ) % MOD; return c; } }; Mat fast_mod( Mat a, int b ) { Mat res; res.init(); while( b ) { if( b & 1 ) res = res * a; a = a * a; b >>= 1; } return res; } void Orz() { int n; LL x, y; while( ~scanf( "%lld %lld %d", &x, &y, &n ) ) { if( n == 1 ) printf( "%lld\n", ( x % MOD + MOD ) % MOD ); else if( n == 2 ) printf( "%lld\n", ( y % MOD + MOD ) % MOD ); else { Mat t; t.mat[0][0] = 0; t.mat[0][1] = 1; t.mat[1][0] = -1; t.mat[1][1] = 1; t = fast_mod( t, n-2 ); LL res = ( ( t.mat[1][0] * x + t.mat[1][1] * y ) % MOD + MOD ) % MOD; printf( "%lld\n", res ); } } } int main() { Orz(); return 0; }
代码君
时间: 2024-12-20 12:42:20