题意:
有两种操作:
1. 插入一个线段
2. 删除一个已存在的线段
每次插入后输出当前插入的线段能完整覆盖存在的几条线段。
解析:
线段树上面维护的是两个值,左端点的和,右端点的和
每次插入一条区间[L, R]就,
先询问 [0, R] 的右端点个数 lsum
再询问[L, INF]的左端点的个数 rsum
tot表示:当前线段还有几条
那么题目要求的是整条线段的个数就是:lsum+rsum?tot
(这里用到了容斥的思想)
再用线段树(或者树状数组)单点增加左节点的个数,和右节点的个数
删除的时候就先获取区间,然后单点修改两个端点,
由于b比较大,有1e9,所以还需要先离散化一下。
my code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mp make_pair
#define ls (o<<1)
#define rs (o<<1|1)
#define lson ls, L, M
#define rson rs, M+1, R
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int MAXN = (int)3e5 + 10;
struct Node {
int lsum, rsum;
Node() { lsum = rsum = 0; }
} node[MAXN << 2];
inline void pushUp(int o) {
node[o].lsum = node[ls].lsum + node[rs].lsum;
node[o].rsum = node[ls].rsum + node[rs].rsum;
}
void build(int o, int L, int R) {
node[o] = Node();
if(L == R) return ;
int M = (L + R)/2;
build(lson);
build(rson);
}
void modify(int o, int L, int R, int pos, int val, int type) {
if(L == R) {
if(type == -1)
node[o].lsum += val;
else
node[o].rsum += val;
return ;
}
int M = (L + R)/2;
if(pos <= M) modify(lson, pos, val, type);
else modify(rson, pos, val, type);
pushUp(o);
}
int query(int o, int L, int R, int ql, int qr, int type) {
if(ql <= L && R <= qr) {
if(type == -1)
return node[o].lsum;
else
return node[o].rsum;
}
int M = (L + R)/2, ret = 0;
if(ql <= M) ret += query(lson, ql, qr, type);
if(qr > M) ret += query(rson, ql, qr, type);
return ret;
}
struct Line {
int L, R;
int lid, rid;
Line() {}
Line(int L, int R) : L(L), R(R) {}
} line[MAXN];
pii oper[MAXN];
int ln, n;
int arr[MAXN*2], an;
void descrete() {
sort(arr, arr+an);
an = unique(arr, arr+an) - arr;
for(int i = 1; i < ln; i++) {
line[i].lid = lower_bound(arr, arr+an, line[i].L) - arr;
line[i].rid = lower_bound(arr, arr+an, line[i].R) - arr;
}
}
void solve() {
build(1, 0, MAXN);
int tot = 0, idx = 1;
int ql, qr;
for(int i = 1; i <= n; i++) {
if(oper[i].first == 0) {
ql = line[idx].lid;
qr = line[idx].rid;
int lsum = query(1, 0, MAXN, 0, qr, 1);
int rsum = query(1, 0, MAXN, ql, MAXN, -1);
printf("%d\n", lsum + rsum - tot);
modify(1, 0, MAXN, ql, 1, -1);
modify(1, 0, MAXN, qr, 1, 1);
idx++, tot++;
}else {
ql = line[oper[i].second].lid;
qr = line[oper[i].second].rid;
modify(1, 0, MAXN, ql, -1, -1);
modify(1, 0, MAXN, qr, -1, 1);
tot--;
}
}
}
int main() {
int cas = 1;
while(scanf("%d", &n) != EOF) {
ln = 1, an = 0;
int a, b;
for(int i = 1; i <= n; i++) {
scanf("%d%d", &a, &b);
oper[i] = mp(a, b);
if(a == 0) {
int L = b, R = b+ln;
line[ln++] = Line(L, R);
arr[an++] = L, arr[an++] = R;
}
}
printf("Case #%d:\n", cas++);
descrete();
solve();
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-11-09 00:08:14