设 $f$ 是 $\bbR$ 上周期为 $1$ 的连续可微函数, 满足 $$\bee\label{141102_f} f(x)+f\sex{x+\frac{1}{2}}=2f(x),\quad,\forall\ x. \eee$$ 试证: $f(x)=0$, $\forall\ x$.
证明: (from xida that this proof comes from ``Proofs of the book‘‘ 4th edition, Chapter 23) 设 $g(x)=f‘(x)$, 则对 \eqref{141102_f} 两边求导有 $$\bee\label{141102_g} g(x)+g\sex{x+\frac{1}{2}}=2g(2x). \eee$$ 设 $g$ 在 $x_0\in [0,1]$ 上取得最大值 $M$, 则于 \eqref{141102_g} 中令 $x=x_0/2$, 则有 $$\bex 2M\geq g\sex{\frac{x_0}{2}}+g\sex{\frac{x_0+1}{2}} =2g(x_0)=2M. \eex$$ 于是 $$\bex g\sex{\frac{x_0}{2}}=M\ra g(0)=\vlm{n}g\sex{\frac{x_0}{2^n}}=M. \eex$$ 同理, 讨论 $g$ 在 $[0,1]$ 上的最小值 $m$, 我们得到 $$\bex g(0)=m. \eex$$ 于是 $$\bex m=g(0)=M\ra g=\const\ra f(x)=a+mx, 0\leq x\leq 1. \eex$$ 又 $f(0)=f(1)$, 而 $m=0$, $f(x)=a$. 但由 \eqref{141102_f}, $f(x)=0$.
[再寄小读者之数学篇](2014-11-02 Herglotz' trick)