Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 122213 Accepted Submission(s): 29653
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3 1 2 10 0 0 0
Sample Output
2 5
解题报告:
一开始做这题就是想暴力求解,所以如期的TLE了。然后换个思路,直接算出了通项公式,但是通项公式有两项都是带根号的,最后不能很好的转换为int,放弃!再接着,瞥了下discuss里面的讨论,得到的关键字是周期,其实也很容易想到,毕竟是mod 7,很快就应该有周期,所以只需要找到周期就好。注意!!!但是由于f(1)=f(2)=1是初始项,并不一定满足通项的结构,所以应该从f(3)开始匹配找周期!更详细的解释请移步:[ACM_HDU_1005]Number
Sequence
当然,这题还有另外的解法,详见 【HDU1005】Number Sequence(矩阵乘法)
#include <iostream> using namespace std; int a,b,n; int A[100]; int main() { while(cin>>a>>b>>n){ if(!a && !b && !n) break; if(n==1 || n==2) cout<<1<<endl; else{ A[1]=A[2]=1;int cyc=n; for(int i=3;i<=100;++i){ A[i]=(a*A[i-1]+b*A[i-2])%7; if(i>5 && A[i]==A[4] && A[i-1]==A[3]){cyc=i-4;break;} } //输出 cout<<A[(n-3)%cyc+3]<<endl; } } return 0; }