【互动问答分享】第8期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代”

Spark亚太研究院100期公益大讲堂 【第8期互动问答分享】

Q1:spark线上用什么版本好?

建议从最低使用的Spark 1.0.0版本,Spark在1.0.0开始核心API已经稳定;

从功能的角度考虑使用最新版本的Spark 1.0.2也是非常好的,Spark 1.0.2在Spark 1.0.1的基础上做了非常多的改进;

Spark 1.0.2改进参考 http://spark.apache.org/releases/spark-release-1-0-2.html

Q2:希望可以细细讲讲推荐系统

推荐系统是机器学习中主要用武之地,Spark亚太研究院决胜大数据时代100期公益大讲堂后续会至少开设三期专题细细讲解;

Q3:用yarn  mesos  standalone   这几种方式那种用在线上好?spark线上用什么版本好?

如果以前没有部署过其它的大数据集群,集群中的计算框架只有Spark,建议直接使用Standalone,简洁而高效,这样有利于获得最大化的集群执行效率;

如果集群中在运行Spark计算平台的同时还运行了Hadoop的MapReduce、Storm等其它框架,建议使用mesos或者yarn;

在中国建议使用Yarn,因为淘宝已经在生产环境下大规模的使用了Yarn,同时Yarn有非常的中文资料;

Q4:机器学习是不是需要很深的数学功底 还是别人实现了 能运行跑起来就ok啦??

Spark的MLLib极大的简化了机器学习库的使用,如果只是简单的使用,不要数学功底,只需要按照官方的示例直接使用即可。

如果进行复制的算法实现,需要数学功底,例如线性代数、统计学等

Q5:还是要深入学习机器学习的那些算法?

从实际应用的角度考虑,最重要的机器学习算法时协同过滤,基于协同过滤的推荐系统在应用系统中有广泛的应用,需要最为第一重点掌握;

分类、聚类、线性回归等也是非常常用而重要的;

Q6:请教下,如果目前应用主要是结构化数据的ORCALE,语言是PLSQL,转换到SPARKSQL是否难度很大,需要完全代码重写呢?

在实际生产环境下,数据和大数据系统是并行存在的,数据库一般直接负责线上交互,大数据系统负责数据分析、实时流处理、交互式查询等;

如果熟练使用PLSQL,可以轻而易举的掌握Spark SQL

Spark SQL的内容可以参考http://edu.51cto.com/lesson/id-33429.html

【互动问答分享】第8期决胜云计算大数据时代Spark亚太研究院公益大讲堂

时间: 2024-10-27 10:32:54

【互动问答分享】第8期决胜云计算大数据时代Spark亚太研究院公益大讲堂的相关文章

【互动问答分享】第5期决胜云计算大数据时代Spark亚太研究院公益大讲堂

Spark亚太研究院100期公益大讲堂 [第5期互动问答分享] Q1:spark怎样支持即席,应该不是spark sql吧,是hive on spark么? Spark1.0 以前支持即席查询的技术是Shark; Spark 1.0和 Spark 1.0.1支持的即席查询技术是Spark SQL; 尚未发布的Spark 1.1开始 Spark SQL是即席查询的核心,我们期待Hive on Spark也能够支持即席查询: Q2:现在spark 1.0.0版本是支持hive on spark么,它

【互动问答分享】第6期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第6期互动问答分享] Q1:spark streaming 可以不同数据流 join吗? Spark Streaming不同的数据流可以进行join操作:       Spark Streaming is an extension of the core Spark API that allows enables high-throughput, fault-tolerant stream processing of live

【互动问答分享】第15期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第15期互动问答分享] Q1:AppClient和worker.master之间的关系是什么? :AppClient是在StandAlone模式下SparkContext.runJob的时候在Client机器上应       用程序的代表,要完成程序的registerApplication等功能: 当程序完成注册后Master会通过Akka发送消息给客户端来启动Driver: 在Driver中管理Task和控制Work

【互动问答分享】第10期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第10期互动问答分享] Q1:Spark on Yarn的运行方式是什么? Spark on Yarn的运行方式有两种:Client和Cluster模式 Client模式如下所示: Cluster模式如下所示: Q2:Yarn的框架内部是如何实现的? Yarn是一个框架,内部实现好了RM和NM: 公开课: 上海:9月26-28日,<决胜大数据时代:Hadoop.Yarn.Spark企业级最佳实践> 北京:

【互动问答分享】第17期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第17期互动问答分享] Q1:为了加快spark shuffle 的执行速度是否可以把spark_local_dirs 指向一块固态硬盘上面,这样做是否有效果. 可以把spark_local_dirs指向一块固态硬盘上面,这样会非常有效的提升Spark执行速度: 同时想更快的提升Spark运行速度的话可以指定多个Shuffle输出的目录,让Shuffle并行读写磁盘: Q2:solidation=true只是在同一机器

【互动问答分享】第13期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第13期互动问答分享] Q1:tachyon+spark框架现在有很多大公司在使用吧? Yahoo!已经在长期大规模使用: 国内也有公司在使用: Q2:impala和spark sql如何选择呢? Impala已经被官方宣布“安乐死”,被官方温柔的放弃: Spark SQL是Spark的核心子框架,同时能够和图计算.机器学习框架无缝集成,强烈推荐使用! Q3:如果有程序采用流式不停往tachyon集群写数据,但tachyon内存

【互动问答分享】第18期决胜云计算大数据时代Spark亚太研究院公益大讲堂(改)

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第18期互动问答分享] Q1:Master和Driver的是同一个东西吗? 两者不是同一个东西,在Standalone模式下Master是用于集群资源管理和调度的,而Driver适用于指挥Worker上的Executor通过多线的方式处理任务的: Master位于集群的管理节点,一般和 NameNode在同一个节点上: Driver一般都位于客户机上,客户机一般都不属于集群,但是和集群在同一个网络环境下,因为客户机中的

【互动问答分享】第12期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第12期互动问答分享]   Q1:jobserver 企业使用情况如何? 中国有一家视频网站已经使用超过JobServer超过半年的时间: 2013年和2014年Spark Summit均大力推荐使用JobServer: Q2:请问,jobserver是适合企业内部还是供外部客户使用(可能并发.安全有要求),还是两者ok? 目前可见的企业使用案例均是用在企业内部: 如果是企业外部可以作为云服务或者大数据资源池使用: Q

【互动问答分享】第2期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第2期互动问答分享] Q1:新手学习spark如何入手才好? 先学习Scala的内容,强烈推荐<快学Scala>: 然后按照我们免费发布的"云计算分布式大数据Spark实战高手之路(共3本书)"循序渐进的学习即可,其中"云计算分布式大数据Spark实战高手之路---从零开始"涵盖了Spark1.0的所有主题:包括Spark集群的构建,Spark架构设计.Spark内核