POJ 2451 Uyuw's Concert

学了ZZY的算法,就要过一下他出的题。

题目大意:

给出一些直线,求半平面交的面积。

解题思路:

半平面交求面积。

下面是代码:

#include <set>
#include <map>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>

#define eps 1e-10
#define pi acos(-1.0)
#define inf 107374182
#define inf64 1152921504606846976
#define lc l,m,tr<<1
#define rc m + 1,r,tr<<1|1
#define zero(a) fabs(a)<eps
#define iabs(x)  ((x) > 0 ? (x) : -(x))
#define clear1(A, X, SIZE) memset(A, X, sizeof(A[0]) * (SIZE))
#define clearall(A, X) memset(A, X, sizeof(A))
#define memcopy1(A , X, SIZE) memcpy(A , X ,sizeof(X[0])*(SIZE))
#define memcopyall(A, X) memcpy(A , X ,sizeof(X))
#define max( x, y )  ( ((x) > (y)) ? (x) : (y) )
#define min( x, y )  ( ((x) < (y)) ? (x) : (y) )

using namespace std;

const int maxn = 30005;
int dq[maxn], top, bot, pn, order[maxn], ln,num;
struct Point
{
    double x, y;
} p[maxn];
struct Line
{
    Point a, b;
    double angle;
} l[maxn];
int dblcmp(double k)
{
    if(fabs(k) < eps) return 0;
    return k > 0 ? 1 : -1;
}
double multi(Point p0, Point p1, Point p2)
{
    return (p1.x-p0.x)*(p2.y-p0.y) - (p1.y-p0.y)*(p2.x-p0.x);
}
bool cmp(int u, int v)
{
    int d = dblcmp(l[u].angle-l[v].angle);
    if(!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > 0;
    //大于0取向量左半部分为半平面,小于0,取右半部分
    return d < 0;
}
void getIntersect(Line l1, Line l2, Point& p)
{
    double dot1, dot2;
    dot1 = multi(l2.a, l1.b, l1.a);
    dot2 = multi(l1.b, l2.b, l1.a);
    p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
    p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
}
bool judge(Line l0, Line l1, Line l2)
{
    Point p;
    getIntersect(l1, l2, p);
    return dblcmp(multi(p, l0.a, l0.b)) < 0;
    //大于小于符号与上面cmp()中注释处相反
}
void addLine(double x1, double y1, double x2, double y2)
{
    l[ln].a.x = x1;
    l[ln].a.y = y1;
    l[ln].b.x = x2;
    l[ln].b.y = y2;
    l[ln].angle = atan2(y2-y1, x2-x1);
    order[ln] = ln;
    ln++;
}
void halfPlaneIntersection()
{
    int i, j;
    sort(order, order+ln, cmp);
    for(i = 1, j = 0; i < ln; i++)
        if(dblcmp(l[order[i]].angle-l[order[j]].angle) > 0)
            order[++j] = order[i];
    ln = j + 1;
    dq[0] = order[0];
    dq[1] = order[1];
    bot = 0;
    top = 1;
    for(i = 2; i < ln; i++)
    {
        while(bot < top && judge(l[order[i]], l[dq[top-1]], l[dq[top]]))
            top--;
        while(bot < top && judge(l[order[i]], l[dq[bot+1]], l[dq[bot]]))
            bot++;
        dq[++top] = order[i];
    }
    while(bot < top && judge(l[dq[bot]], l[dq[top-1]], l[dq[top]])) top--;
    while(bot < top && judge(l[dq[top]], l[dq[bot+1]], l[dq[bot]])) bot++;
    num=0;
    for(i=bot; i<top; i++)
    {
        getIntersect(l[dq[i]],l[dq[i+1]],p[num++]);
    }
    if(top > bot+1)getIntersect(l[dq[top]], l[dq[bot]],p[num++]);

}
double xmul(Point p0,Point p1,Point p2)
{
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}

double Get_area()
{
    double area = 0;
    for(int i = 1; i < num-1; i++)
        area += xmul(p[0], p[i], p[i+1]);
    return fabs(area)/2.0;
}
int main()
{
    int i;
    double x1,x2,y1,y2;
    scanf ("%d", &pn);
    for(ln = i = 0; i < pn; i++)
    {
        scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
        addLine(x1, y1, x2,y2);
    }
    addLine(0,0,10000,0);
    addLine(10000,0,10000,10000);
    addLine(10000,10000,0,10000);
    addLine(0,10000,0,0);
    halfPlaneIntersection();
    printf("%.1f\n",Get_area());
    return 0;
}

POJ 2451 Uyuw's Concert

时间: 2024-11-08 21:49:27

POJ 2451 Uyuw's Concert的相关文章

poj 2451 Uyuw&#39;s Concert(半平面交)

Uyuw's Concert Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8580   Accepted: 3227 Description Prince Remmarguts solved the CHESS puzzle successfully. As an award, Uyuw planned to hold a concert in a huge piazza named after its great d

POJ 2451 Uyuw&#39;s Concert(半平面交nlgn)

//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> #include <iostream> #include <cstring> #include <cmath> #include <stack> #include <queue> #include <vector> #include <

[poj2451]Uyuw&#39;s Concert

半平面交滴裸题,但是要求nlogn,练练手 #include<iostream> #include<cstdio> #include<cmath> #include<algorithm> #define MN 50000 #define eps 1e-17 #define ld long double using namespace std; inline int read() { int x = 0 , f = 1; char ch = getchar()

计算几何模板 (bzoj 1336,poj 2451 ,poj3968)

poj 3968 (bzoj 2642) 二分+半平面交,每次不用排序,这是几个算几版综合. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<vector> #include<deque> using namespace std; #define MAXN 100000 na

POJ 2451 nlog(n)半平面交裸题。

前言       最近学习C#,不过好在当初考计算机二级学习过C++,刚上手没有对C#感到很恐惧.C#视频也看了几天 了,总感觉不总结一下心里没底,现在跟着我从头走进C#之旅吧.     C#是以后总面向对象的编程语言(OOP),C#是从C和C++派生出来的,主要用于开发可以运行在.NET平台 上的应用程序.随着.NET的发展,C#语言简单.现代.面向对象和类型安全显示了一定的优势.     下面我就介绍一些初学者不太理解的一些东西.   C#有以下突出的特点       (1)语法简洁.不允许

POJ2451 Uyuw&#39;s Concert (半平面交)

POJ2451  给定N个半平面 求他们的交的面积. N<=20000 首先参考 POJ1279 多边形的核 其实就是这里要求的半平面交 但是POJ1279数据较小 O(n^2)的算法 看起来是要TLE的 但是试着提交了一下 一遍就A了... 看来暴力的半平面切割法实际表现远远好于O(n^2) 如果数据再大一点呢? N=100000? 有一个办法可以优化到O(nlogn) step1. 将所有半平面按极角排序,对于极角相同的,选择性的保留一个. O(nlogn) step2. 使用一个双端队列(

[转] POJ几何分类

转自:http://blog.csdn.net/tyger/article/details/4480029 计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板很重要,模板必须高度可靠.3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面大部分是模板.如果代码一片混乱,那么会严重影响做题正确率.4.注意精度控制.5.能用整数的地方尽量用整数,要想到扩大数据的方法(扩大一倍,或扩大sqrt2).因为整数不用考虑浮点误差,而且运算比浮点快. 一.点

【转】计算几何题目推荐

打算转下来好好做计算几何了. 原文地址:http://blog.sina.com.cn/s/blog_49c5866c0100f3om.html 其实也谈不上推荐,只是自己做过的题目而已,甚至有的题目尚未AC,让在挣扎中.之所以推荐计算几何题,是因为,本人感觉ACM各种算法中计算几何算是比较实际的算法,在很多领域有着重要的用途计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板很重要,模板必须高度可靠.3.要注意代码的组织,因为计算几何的题目很容易上两百行

【转】[专题学习][计算几何]

原文地址:http://www.cnblogs.com/ch3656468/archive/2011/03/02/1969303.html 基本的叉积.点积和凸包等东西就不多说什么了,网上一搜一大堆,切一些题目基本熟悉了就差不多了. 一些基本的题目可以自己搜索,比如这个blog:http://blog.sina.com.cn/s/blog_49c5866c0100f3om.html 接下来,研究了半平面交,思想方法看07年朱泽园的国家队论文,模板代码参考自我校大牛韬哥: http://www.o