Beginning Scala study note(5) Pattern Matching

The basic functional cornerstones of Scala: immutable data types, passing of functions as parameters and pattern matching.
1. Basic Pattern Matching
  In Scala, your cases can include types, wildcards, sequences, regular expressions, and so forth.

scala> def printNum(int: Int) {
| int match {
| case 0 => println("Zero")
| case 1 => println("One")
| case _ => println("more than one")
| }
| }
printNum: (int: Int)Unit
scala> printNum(1)
One
scala> printNum(0)
Zero
scala> printNum(2)
more than one

  The underscore "_" wildcard matches anything not defined in the cases above it, just like the default keyword in Java. If you try to put a case _ before any other case clauses, the compiler will throw an unreachable code error on the next clause.

scala> def printNum(int : Int) {
| int match {
| case _ => println("more than one")
| case 0 => println("Zero")
| }
| }
<console>:13: error: unreachable code
case 0 => println("Zero")
^

  Use the -print option in the Scala compiler to understand the Scala compiler expands a pattern into code.

scalac -print PrintNum.scala
package <empty> {
  final object PrintNum extends java.lang.Object with ScalaObject {
    def printNum(int: Int): Unit = {
    <synthetic> val temp1: Int = int;
      (temp1: Int) match {
      case 1 => {
      scala.this.Predef.println("One")
      }
      case 0 => {
      scala.this.Predef.println("Zero")
      }
      case _ => {
      scala.this.Predef.println("more than one")
      }
      }
    };
    def this(): object PrintNum = {
    PrintNum.super.this();
    ()
  }
  }
}

  The difference of Scala‘s pattern matching and Java‘s switch statement.

# Scala
def fibonacci(in: Int):Int = in match {
  case 0 => 0
  case 1 => 1
  case n => fibonacci(n - 1) + fibonacci(n - 2)
}
# Java
public int fibonacci(int in){
  switch(in){
  case 0: return 0;
  case 1: return 1;
  default: return fibonacci(n - 1) + fibonacci(n - 2);
  }
}

  You can see:

  1) There‘s no break statement between cases in Scala.
  2) The last case in Scala assigns the default value to the variable n. Pattern matching in Scala is also an expression that returns a value.
  3) In Scala, we can have multiple tests on a single line:

case 0 | -1 | -2 => 0
# responds java
case 0:
case -1:
case -2:
return 0;

  Scala allows guards to be placed in patterns to test for particular conditions that cannot be tested in the pattern declaration itself.

def fib2(in: Int):Int = in match {
    case n if n <= 0 => 0
    case 1 => 1
    case n => fib2(n-1) + fib2(n-2)
}

  Guards are very helpful as the amount of logic gets more complex.

2. Matching Any Type
  Example:

scala> val anyList = List(1,"A",2,2.5,‘a‘)
anyList: List[Any] = List(1, A, 2, 2.5, a)
scala> for(m <- anyList) {
| m match {
| case i: Int => println("Integer: "+i)
| case s: String => println("String: "+s)
| case f: Double => println("Double: "+f)
| case other => println("other: "+other) # 注意other位于其他case之前会导致other之后的case无法访问
| }
| }
Integer: 1
String: A
Integer: 2
Double: 2.5
other: a

3. Testing Data Types

  Test an incoming Object to see whether it‘s a String, an Integer, or something else.

scala> def test2(in: Any) = in match {
| case s: String => "String, length "+s.length
| case i: Int if i > 0 => "Natural Int"
| case i: Int => "Another Int"
| case a: AnyRef => a.getClass.getName
| case _ => "null"
| }
test2: (in: Any)java.lang.String
scala> test2(1)
res1: java.lang.String = Natural Int
scala> test2("123")
res4: java.lang.String = String, length 3
scala> test2(List(1))
res5: java.lang.String = scala.collection.immutable.$colon$colon
scala> test2(1.2)
res7: java.lang.String = java.lang.Double
scala> test2(null)
res8: java.lang.String = null
# java code
public String test2(Object in){
    if(in == null)
      return "null";
    if(in instanceof String)
      return "String, length "+(String)in.length();
    if(in instanceof Integer){
      int i = ((Integer)in).intValue();
    if(i>0)
      return "Natural Int";
    return "Another Int";
  }
  return in.getClass().getName();
}

4. Pattern Matching in Lists

  In Scala, the cons cell(非空列表) is represented by the ‘::‘ case class. ‘::‘ is the name of the method and the name of a case class.

scala> val x = 1
x: Int = 1
scala> x :: rest
res10: List[Int] = List(1, 2, 3, 4)
# note the symmetry(对称性) between creating and matching
scala> (x::rest) match{case Nil => ; case xprime::restprime => println(xprime);println(restprime)}
1
List(2, 3, 4)

  Then we can extract the head(x) and tail(rest) of the List in pattern matching.

5. Pattern Matching and Lists
  Use pattern matching to sum up all the odd Ints in a List[Int].

scala> def sumOdd(in: List[Int]):Int = in match {
| case Nil => 0
| case x::rest if x % 2 == 1 => x + sumOdd(rest)
| case _::rest => sumOdd(rest)
| }
sumOdd: (in: List[Int])Int

  If the list is empty, Nil, then we return 0. The next case extracts the first element from the list and tests to see whether it‘s odd. If it is, we add it to the sum of the rest of the odd numbers in the list. The default case is to ignore the first element of the list and return the sum of the odd numbers in the rest of the list.

  Replace any number of contiguous identical items with just one instance of that item:

scala> def noPairs[T](in: List[T]): List[T] = in match {
| case Nil => Nil
// the first two elements in the list are the same, so we‘ll call noPairs with a List that excludes the duplicate element
| case a :: b :: rest if a == b => noPairs(a :: rest)
// return a List of the first element followed by noPairs run on the rest of the List
| case a :: rest => a :: noPairs(rest)
| }
noPairs: [T](in: List[T])List[T]
scala> noPairs(List(1,2,3,3))
res32: List[Int] = List(1, 2, 3)

  Pattern matching can match against constants as well as extract information.

scala> def ignore(in: List[String]): List[String] = in match {
| case Nil => Nil
// if the second element in the List is "ignore" then return the ignore method run on the balance of the List
| case _ :: "ignore" :: rest => ignore(rest)
// return a List created with the first element of the List plus the value of applying the ignore method to the rest of the List
| case x :: rest => x :: ignore(rest)
| }
ignore: (in: List[String])List[String]

  We can also use the class test/cast mechanism to find all the Strings in a List[Any].

scala> def getStrings(in: List[Any]): List[String] = in match {
     |     case Nil => Nil
     |     case (s: String) :: rest => s :: getStrings(rest)
     |     case _ :: rest => getStrings(rest)
     | }
getStrings: (in: List[Any])List[String]
scala> getStrings(List(1,3,"2","hello",4.5,‘x‘))
res11: List[String] = List(2, hello)

6. Pattern Matching and Case Classes

  Case classes are classes that get toString, hashCode, and equals methods automatically. It turns out that they also get properties and extractors. Case classes have properties and can be constructed without using the new keyword.

scala> case class Person(name: String, age: Int, valid: Boolean)
defined class Person
scala> val p = Person("David",45,true)
p: Person = Person(David,45,true)
scala> p.name
res39: String = David
scala> p.hashCode
res41: Int = -1915761054

  By default, the properties are read-only, and the case class is immutable.

scala> p.name = "ws"
<console>:10: error: reassignment to val
p.name = "ws"
^

  You can also make properties mutable:

scala> case class MPersion(var name: String, var age:Int)
defined class MPersion
scala> val mp = MPersion("ws",27)
mp: MPersion = MPersion(ws,27)
scala> mp.name
res42: String = ws
scala> mp.name = "ly"
mp.name: String = ly

  How does case class work with pattern matching?

scala> def older(p: Person):Option[String] = p match {
| case Person(name,age,true) if age > 35 => Some(name)
| case _ => None
| }
older: (p: Person)Option[String]

  If valid field is true, the age is extracted and compared against a guard. If the guard succeeds, the person‘s name is returned, otherwise None is returned.

scala> older(p)
res47: Option[String] = Some(David)
scala> older(Person("Fred",73,true))
res49: Option[String] = Some(Fred)
scala> older(Person("Jorge",24,true))
res50: Option[String] = None

7. Nested Pattern Matching in Case Classes

  Case classes can contain other case classes, and the pattern matching can be nested, Further, case classes can subclass other case classes.

scala> case class MarriedPerson(override val name: String,
| override val age: Int,
| override val valid: Boolean,
| spouse: Person) extends Person(name,age,valid)
defined class MarriedPerson
scala> val sally = MarriedPerson("Sally",24,true,p)
sally: MarriedPerson = Person(Sally,24,true)

  Create a method that returns the name of someone who is older or has a spouse who is older:

scala> def mOlder(p: Person): Option[String] = p match{
| case Person(name,age,true) if age > 35 => Some(name)
| case MarriedPerson(name,_,_,Person(_,age,true)) if age > 35 => Some(name)
| case _ => None
| }
mOlder: (p: Person)Option[String]
scala> mOlder(p)
res51: Option[String] = Some(David)
scala> mOlder(sally)
res52: Option[String] = Some(Sally)

8. Pattern Matching As Functions

  You can also pass pattern matching as a parameter to other methods. Scala compiles a pattern match down to a PartialFunction[A,B], which is a subclass of Function1[A,B]. So a pattern can be passed to any method that takes a single parameter function.
  This allow us to reduce this code snippet:

list.filter(a => a match {
  case s: String => true
  case _ => false
})

  into the following snippet:

list.filter(
  case s: String => true
  case _ => false
)

  Patterns are instances. In addition to passing them as parameters, they can also be stored for later use.

  In addition to Function1‘s apply method, PartialFunction has an isDefinedAt method so that you can test to see whether a pattern matches a given value. If it doesn‘t match, a MatchError will be raised.

scala> def handleRequest(req: List[String])
| (exceptions: PartialFunction[List[String],String]): String =
| if (exceptions.isDefinedAt(req)) exceptions(req) else
| "Handling URL "+req+" in the normal way"
handleRequest: (req: List[String])(exceptions: PartialFunction[List[String],String])String

  So if the partial function exceptions(the pattern) matches the request req according to the isDefinedAt method, then we allow the request to be handled by the exceptions functon.

scala> def doApi(call: String, params: List[String]): String =
| "Doing API call "+call
scala> handleRequest("foo" :: Nil){
| case "api" :: call :: params => doApi(call,params)}
res54: String = Handling URL List(foo) in the normal way
scala> handleRequest("api"::"foo"::Nil){
| case "api"::call::params=>doApi(call,params)
| }
res57: String = Doing API call foo
scala> val one: PartialFunction[Int,String] = {case 1 => "one"}
one: PartialFunction[Int,String] = <function1>
scala> one.isDefinedAt(1)
res58: Boolean = true
scala> one.isDefinedAt(4)
res59: Boolean = false

  Partial function can be composed into a single function using the orElse method.

scala> val f1: PartialFunction[List[String],String] = {
| case "stuff" :: Nil => "Got some stuff"
| }
f1: PartialFunction[List[String],String] = <function1>

scala> val f2: PartialFunction[List[String],String] = {
| case "other" :: params => "Other: "+params
| }
f2: PartialFunction[List[String],String] = <function1>

scala> val f3 = f1 orElse f2
f3: PartialFunction[List[String],String] = <function1>

  You can pass them into the handleRequest method:

handleRequest("a"::"b"::Nil)(f3)

  Partial functions replace a lot of the XML configuration files in Java because pattern matching gives you the same declarative facilities as a configuration file.

def dispatch: LiftRules.DispatchPF = {
case Req("api" :: "status" :: Nil, "", GetRequest) => status
case Req("api" :: "messages" :: Nil, "", GetRequest) => getMsgs
case Req("api" :: "messages" :: "long_poll" :: Nil, "", GetRequest) =>
waitForMsgs
case Req("api" :: "messages" :: Nil, "", PostRequest) =>
() => sendMsg(User.currentUser.map(_.id.is), S)
case Req("api" :: "follow" :: Nil, _, GetRequest) =>
following(calcUser)
case Req("api" :: "followers" :: Nil, _, GetRequest) =>
followers(calcUser)
case Req("api" :: "follow" :: Nil, _, PostRequest) =>
performFollow(S.param("user"))
}
时间: 2024-10-05 04:33:38

Beginning Scala study note(5) Pattern Matching的相关文章

Beginning Scala study note(6) Scala Collections

Scala's object-oriented collections support mutable and immutable type hierarchies. Also support functional higher-order operations such as map, filter, and reduce that let you use expression-oriented programming in collections. Higher-order operatio

Beginning Scala study note(2) Basics of Scala

1. Variables (1) Three ways to define variables: 1) val refers to define an immutable variable; scala> val x = 10 x: Int = 10 scala> x*x res4: Int = 100 scala> res4 + 1 # use result as a value res6: Int = 101 scala> res4 + res6 res7: Int = 201

Beginning Scala study note(9) Scala and Java Interoperability

1. Translating Java Classes to Scala Classes Example 1: # a class declaration in Java public class Book{} # Scala equivalent of a class declaration class Book Example 2: # a Java class with a Construtor public class Book{ private final int isbn; priv

Beginning Scala study note(3) Object Orientation in Scala

1. The three principles of OOP are encapsulation(封装性), inheritance(继承性) and polymorphism(多态性). example: class Shape{ def area: Double = 0.0 } # supertype # subtypes class Rectangle(val width: Double, val height: Double) extends Shape{ override def ar

Beginning Scala study note(8) Scala Type System

1. Unified Type System Scala has a unified type system, enclosed by the type Any at the top of the hierarchy and the type Nothing at the bottom of the hierarchy. All Scala types inherit from Any. # Using Any, Book extends AnyRef, and x is an Int that

Beginning Scala study note(7) Trait

A trait provides code reusability in Scala by encapsulating method and state and then offing possibility of mixing them into classes thus allowing code reuse. #define Trait Gliding scala> trait Gliding{ | def gliding(){ println("gliding")} |

Beginning Scala study note(4) Functional Programming in Scala

1. Functional programming treats computation as the evaluation of mathematical and avoids state and mutable data. Scala encourages an expression-oriented programming(EOP) 1) In expression-oriented programming every statement is an expression. A state

Scala Learning(1): 使用Pattern Matching表达JSON

这是一个挺能展现Scala编程方式的例子,对正在熟悉Scala这门语言的开发者很有帮助. Representing JSON 用Scala来表达JSON(Java Script Object Notation)结构, { "firstname" : "John", "lastname" : "Smith", "address" : { "street" : "21 2nd St

scala pattern matching

scala语言的一大重要特性之一就是模式匹配.在我看来,这个怎么看都很像java语言中的switch语句,但是,这个仅仅只是像(因为有case关键字),他们毕竟是不同的东西,switch在java中,只能是用在函数体类的,且需要结合break使用.但是,在scala语言中,pattern matching除了有case关键字,其他,似乎和java又有很多甚至完全不同的东西. scala在消息处理中为模式匹配提供了强大的支持! 下面看看模式匹配的英文定义: A pattern match incl