机器学习 - 回归分析

回归分析(Regression Analysis)

是一种统计学上分析数据的方法,目的在于了解两个或多个变数间是否相关、相关方向与强度,并建立数学模型以便观察特定变数来预测研究者感兴趣的变数。

回归分析是建立因变数{\displaystyle Y}(或称依变数,反应变数)与自变数{\displaystyle X}(或称独变数,解释变数)之间关系的模型。简单线性回归使用一个自变量{\displaystyle X}复回归使用超过一个自变量({\displaystyle X_{1},X_{2}...X_{i}})。

数学基础:

1. 最小二乘法(最小平方法)

收获:

1,如果自变量与因变量之间存在非线性好相关性,有些也可以转化为线性相关性来训练,比如X平方的关系,我们就可以在样本数据中增加一列来处理这一列就是X的平方值。

时间: 2024-11-04 12:58:16

机器学习 - 回归分析的相关文章

利用Spark mllab进行机器学习的基本操作(聚类,分类,回归分析)

Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力.而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法.Python具有Spark的API.需要注意的是,Spark中,所有数据的处理都是基于RDD的. 首先举一个聚类方面的详细应用例子Kmeans: 下面代码是一些基本步骤,包括外部数据,RDD预处理,训练模型,预测. #coding:utf-8 from numpy import array from math import sqrt from pyspark

【机器学习笔记二】回归分析 - 随机梯度下降

参考资料: [1]    Spark MLlib 机器学习实践 [2]    机器学习之梯度下降 http://www.cnblogs.com/rcfeng/p/3958926.html [3]   统计学习方法 1.回归分析概念 在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析. 2.梯度下降的概念 梯度下降是一个寻找函数极值的过程,在低维度下非常容易理解.例如存在函数,则我们有导数. 假设当

【机器学习笔记三】回归分析 - 岭回归

参考资料 [1]    http://blog.csdn.net/google19890102/article/details/27228279 [2]    讲讲共线性问题 http://www.jianshu.com/p/ef1b27b8aee0?from=timeline [3]    最小二乘法的矩阵形式推导 http://blog.csdn.net/monsterhoho/article/details/46753673 [4]    Spark MLlib 机器学习实践 1.共线性及

[Machine Learning] 国外程序员整理的机器学习资源大全

本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3

机器学习基础

2017-06-25 20:53:07 一.机器学习的定义 Tom Mitchell:机器学习是对能通过经验自动改进的计算机算法的研究.机器学习可以彰显数据背后真正的含义. 二.机器学习的分类 (1)监督学习 supervised learning 所谓监督学习,就是指在学习过程中会有一组标准答案提供,监督学习从给定的训练集中学习出一个函数当新的数据到来时,便可以根据这个函数给出预测. 监督学习有两种目标变量,一种是连续型的数值型变量,一般这种目标函数适合用回归分析:另一种是离散型的标称型变量,

史上最全的机器学习资料(上) 转

转自:http://www.afenxi.com/post/18593 摘要: 机器学习牵涉的编程语言十分之广,包括了MATLAB.Python.Clojure.Ruby等等.为了让开发者更加广泛.深入地了解机器学习,云栖社区组织翻译了GitHub Awesome Machine Learning 资源,涵盖24种编程语言的机器学习的框架.库以及其他相关资料. 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.

斯坦福机器学习视频笔记 Week3 Logistic Regression and Regularization

我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost functon),以及逻辑回归对多分类的应用. 我们还涉及正规化. 机器学习模型需要很好地推广到模型在实践中没有看到的新例子. 我们将介绍正则化,这有助于防止模型过度拟合训练数据. Classification 分类问题其实和回归问题相似,不同的是分类问题需要预测的是一些离散值而不是连续值. 如垃圾邮件分

机器学习常用算法盘点

在本文中,我将提供两种分类机器学习算法的方法.一是根据学习方式分类,二是根据类似的形式或功能分类.这两种方法都很有用,不过,本文将侧重后者,也就是根据类似的形式或功能分类.在阅读完本文以后,你将会对监督学习中最受欢迎的机器学习算法,以及它们彼此之间的关系有一个比较深刻的了解. 下面是一张算法思维导图,点击放大查看. 从学习方式分类 算法对一个问题建模的方式很多,可以基于经历.环境,或者任何我们称之为输入数据的东西.机器学习和人工智能的教科书通常会让你首先考虑算法能够采用什么方式学习.实际上,算法

机器学习算法之旅

在理解了我们须要解决的机器学习问题之后,我们能够思考一下我们须要收集什么数据以及我们能够用什么算法.本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,非常有帮助. 机器学习领域有非常多算法,然后每种算法又有非常多延伸,所以对于一个特定问题,怎样确定一个正确的算法是非常困难的.本文中我想给你们两种方法来归纳在现实中会遇到的算法. 学习方式 依据怎样处理经验.环境或者不论什么我们称之为输入的数据,算法分为不同种类.机器学习和人工智能课本通常先考虑算法能够适应的学习方式. 这里仅仅讨论几个基