python 之 迭代器和生成器(yield)

一、罗列全部的内置函数

  戳:https://docs.python.org/2/library/functions.html

二、range、xrange(迭代器)

  无论是range()还是xrange()都是Python里的内置函数。这个两个内置函数最常用在for循环中。例如:

  1. >>> for i in range(5):
  2. ... print i
  3. ...
  4. 0
  5. 1
  6. 2
  7. 3
  8. 4
  9. >>> for i in xrange(5):
  10. ... print i
  11. ...
  12. 0
  13. 1
  14. 2
  15. 3
  16. 4
  17. >>>

range()和xrange() 在Python 2里是两种不同的实现。但是在Python 3里,range()这种实现被移除了;
保留了xrange()的实现,且将xrange()重新命名成range()。

首先,我们来看Python 2里range()。它是一个内置函数,这个函数用于创建整数等差数列。因此它
常被用于for循环。下面是range()的官方帮助文档。

  1. Help on built-in function range in module __builtin__:
  2. range(...)
  3. range(stop) -> list of integers
  4. range(start, stop[, step]) -> list of integers
  5. Return a list containing an arithmetic progression of integers.
  6. range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
  7. When step is given, it specifies the increment (or decrement).
  8. For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
  9. These are exactly the valid indices for a list of 4 elements.
  10. (END)

从官方帮助文档,我们可以看出下面的特性:
1、内置函数(built-in)
2、接受3个参数分别是start, stop和step(其中start和step是可选的,stop是必需的)
3、如果没有指定start,默认从0开始(Python都是从0开始的)
4、如果没有指定step,默认step是1。(step不能是0,如果指定step为0,“ValueError: range() step argument must not be zero”
      将会被抛出。
额外的特性:
1、当step为正数时,start应该小于stop,否则将生成[ ],即空数列。

  1. >>> range(-3)
  2. []
  3. >>> range(5, 1)
  4. []
  5. >>> range(1,1)
  6. []

2、当step为负数时,start应该大于stop,否则将生成[ ],即空数列。
这两个特性说明range()可以生成递增和递减的数列。
下面是range()生成数列的例子:

  1. >>> range(5)
  2. [0, 1, 2, 3, 4]
  3. >>> range(1,8,3)
  4. [1, 4, 7]
  5. >>> range(0, -10)
  6. []
  7. >>> range(0, -10, -2)
  8. [0, -2, -4, -6, -8]
  9. >>>

接下来看看xrange()。 xrange()虽然也是内置函数,但是它被定义成了Python里一种类型(type),
这种类型就叫xrange。我们从Python 2的interactive shell里很容易看到这点。

  1. >>> range
  2. <built-in function range>
  3. >>> xrange
  4. <type ‘xrange‘>
  5. >>>

我们再来看看xragne的官方帮助文档:

  1. Help on class xrange in module __builtin__:
  2. class xrange(object)
  3. | xrange(stop) -> xrange object
  4. | xrange(start, stop[, step]) -> xrange object
  5. |
  6. | Like range(), but instead of returning a list, returns an object that
  7. | generates the numbers in the range on demand. For looping, this is
  8. | slightly faster than range() and more memory efficient.
  9. |
  10. | Methods defined here:
  11. |
  12. | __getattribute__(...)
  13. | x.__getattribute__(‘name‘) <==> x.name
  14. |
  15. | __getitem__(...)
  16. | x.__getitem__(y) <==> x[y]
  17. |
  18. | __iter__(...)
  19. | x.__iter__() <==> iter(x)
  20. |
  21. | __len__(...)
  22. | x.__len__() <==> len(x)
  23. |
  24. | __reduce__(...)
  25. |
  26. | __repr__(...)
  27. | x.__repr__() <==> repr(x)
  28. |
  29. | __reversed__(...)
  30. | Returns a reverse iterator.
  31. |
  32. | ----------------------------------------------------------------------
  33. | Data and other attributes defined here:
  34. |
  35. | __new__ =
  36. | T.__new__(S, ...) -> a new object with type S, a subtype of T
  37. (END)

从文档里可以看出,xrange和range的参数和用法是相同的。只是xrange()返回的不再是一个数列,而是一个
xrange对象。这个对象可以按需生成参数指定范围内的数字(即元素)。由于xrange对象是按需生成单个的
元素,而不像range那样,首先创建整个list。所以,在相同的范围内,xrange占用的内存空间将更小,xrange
也会更快。实际上,xrange由于是在循环内被调用时才会生成元素,因此无论循环多少次,只有当前一个元素
占用了内存空间,且每次循环占用的都是相同的单个元素空间。我们可以粗略的认为,相同n个元素的话,range占
用的空间是xrange的n倍。因此,在循环很大情况下,xrange的高效率和快速将表现的很明显。我们可以用timeit
来测试一下range和xrange的执行时间。

  1. >>> timeit.timeit(‘for i in range(10000000): pass‘,number=1)
  2. 0.49290895462036133
  3. >>> timeit.timeit(‘for i in xrange(10000000): pass‘,number=1)
  4. 0.2595210075378418

在大量循环的条件下,可以看到xrange的高效率是很明显的。

总结一下:
1、range()返回整个list。
2、xrange()返回的是一个xrange object,且这个对象是个iterable。
3、两者都用与for循环。
4、xrange()占用更少的内存空间,因为循环时xrange()只生成当前的元素,不像range()一开始就成生成完整的list。
这就是在Python 2里range和xrange的相同点和区别。

那么在Python 3里,我们在前面提到了range()被移除了,xrange()被重新命名成了range()。它们之间有区别吗?
请看下面的代码
Python 2的xrange()

  1. Python 2.7.6 (default, Dec 5 2013, 23:54:52)
  2. [GCC 4.6.3] on linux2
  3. Type "help", "copyright", "credits" or "license" for more information.
  4. >>> x = xrange(5)
  5. >>> x
  6. xrange(5)
  7. >>> x[:]
  8. Traceback (most recent call last):
  9. File "", line 1, in <module>
  10. TypeError: sequence index must be integer, not ‘slice‘
  11. >>> x[-1]
  12. 4
  13. >>> list(x)
  14. [0, 1, 2, 3, 4]
  15. >>> dir(x)
  16. [‘__class__‘, ‘__delattr__‘, ‘__doc__‘, ‘__format__‘, ‘__getattribute__‘, ‘__getitem__‘, ‘__hash__‘, ‘__init__‘, ‘__iter__‘, ‘__len__‘, ‘__new__‘, ‘__reduce__‘, ‘__reduce_ex__‘, ‘__repr__‘, ‘__reversed__‘, ‘__setattr__‘, ‘__sizeof__‘, ‘__str__‘, ‘__subclasshook__‘]
  17. >>>

Python 3的range()

  1. Python 3.3.4 (default, Feb 23 2014, 23:07:23)
  2. [GCC 4.6.3] on linux
  3. Type "help", "copyright", "credits" or "license" for more information.
  4. >>> x = range(5)
  5. >>> x
  6. range(0, 5)
  7. >>> x[:]
  8. range(0, 5)
  9. >>> x[:3]
  10. range(0, 3)
  11. >>> list(x)
  12. [0, 1, 2, 3, 4]
  13. >>> x[-1]
  14. 4
  15. >>> dir(x)
  16. [‘__class__‘, ‘__contains__‘, ‘__delattr__‘, ‘__dir__‘, ‘__doc__‘, ‘__eq__‘, ‘__format__‘, ‘__ge__‘, ‘__getattribute__‘, ‘__getitem__‘, ‘__gt__‘, ‘__hash__‘, ‘__init__‘, ‘__iter__‘, ‘__le__‘, ‘__len__‘, ‘__lt__‘, ‘__ne__‘, ‘__new__‘, ‘__reduce__‘, ‘__reduce_ex__‘,‘__repr__‘, ‘__reversed__‘, ‘__setattr__‘, ‘__sizeof__‘, ‘__str__‘, ‘__subclasshook__‘, ‘count‘, ‘index‘, ‘start‘, ‘step‘, ‘stop‘]
  17. >>>

很明显,range object在Python里增加了新的attributes,‘count‘, ‘index‘, ‘start‘, ‘step‘, ‘stop‘
且能支持slicing。Python 3的range()在xrange()的基础上变得更强大了。

请理解下面这句话:
The advantage of the range type over a regular list or tuple is that a range object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the startstop and step values, calculating individual items and subranges as needed).

到这里,我们应该比较清楚range和xrange的区别了

时间: 2024-11-03 21:26:26

python 之 迭代器和生成器(yield)的相关文章

python之迭代器与生成器

python之迭代器与生成器 可迭代 假如现在有一个列表,有一个int类型的12345.我们循环输出. list=[1,2,3,4,5] for i in list: print(i) for i in 12345: print(i) 结果: Traceback (most recent call last): File "C:/Pycham/生成器与迭代器/test1.py", line 6, in <module> for i in 12345: TypeError:

【Python】迭代器、生成器、yield单线程异步并发实现详解

转自http://blog.itpub.net/29018063/viewspace-2079767 大家在学习python开发时可能经常对迭代器.生成器.yield关键字用法有所疑惑,在这篇文章将从理论+程序调试验证的方式详细讲解这部分知识,话不多说,直接进入主题. 一.迭代器(Iterater):     首先介绍迭代器,迭代器是访问集合元素的一种方式,迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.是不是觉得跟for循环很像?但是迭代器有几个特性需记住:    1.访问者

Python的迭代器和生成器

先说迭代器,对于string.list.dict.tuple等这类容器对象,使用for循环遍历是很方便的就,在后台for语句对容器对象对象调用iteration()函数,这是python的内置函数,iter()会返回一个定义next()方法的迭代器对象,它在容器中逐个访问容器内元素,next()也是python的内置函数.在没有后续元素是,调用next()会抛出一个StopIteration异常 上面说的都是python自带的容器对象,它们都实现了相应的迭代器方法,自定义类的遍历怎么实现,方法是

python中迭代器和生成器。

前言:很多python教程中,对python的解释不容易理解,本文记录自己的理解和体会,是对迭代器和生成器的初步理解. 迭代器: 迭代器的实质是实现了next()方法的对象,常见的元组.列表.字典都是迭代器. 迭代器中重点关注两种方法: __iter__方法:返回迭代器自身.可以通过python内建函数iter()调用. __next__方法:当next方法被调用的时候,迭代器会返回它的下一个值,如果next方法被调用,但迭代器没有只可以返回,就会引发一个StopIteration异常.该方法可

python之 迭代器,生成器

什么叫跌代: 可以将某个数据集合内的数据一个一个挨着取出来就叫做跌代. 迭代器协议: 可以被跌代要满足的要求叫做可迭代协议,可迭代对象必须提供一个next的方法,执行该方法要么返回跌代中的下一项,要么就引起一个StopIteration异常,以终止跌代(跌代只能往后走,而不能往前退) python中的for循环: for循环的本质就是遵循迭代器协议去访问对象,for循环可以遍历(字符串,列表,元祖,字典,集合,文件对象)这些对象都是不可迭代对象,只不过在for循环时,调用了他们内部的-iter-

python基础----迭代器、生成器、协程函数

一.什么是迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前退) 2.可迭代对象:实现了迭代器协议的对象(如何实现:对象内部定义一个__iter__()方法) 3.协议是一种约定,可迭代对象实现了迭代器协议,python的内部工具(如for循环,sum,min,max函数等)使用迭代器协议访问对象. 二,为什么要用迭代器 优点: 1:迭代器提供了一种不依赖于索引的取值方式,

day13 python学习 迭代器,生成器

1.可迭代:当我们打印 print(dir([1,2]))   在出现的结果中可以看到包含 '__iter__', 这个方法,#次协议叫做可迭代协议 包含'__iter__'方法的函数就是可迭代函数 字符串.列表.元组.字典.集合都可以被for循环,说明他们都是可迭代的. 2.迭代器 iterator l = [1,2,3,4] l_iter = l.__iter__() #迭代器的生成 item = l_iter.__next__() #迭代器的使用,用此方法一一钓鱼迭代器中的数值 print

零基础学python-19.5 重放迭代器:生成器yield

这一章节我们来讨论一些生成器yield 1.yield的特性:延迟结果创建 * 生成器函数:也是使用def定义,但是使用yield返回,而且每次返回只是返回一个结果,在每次产生结果之间挂起和继续它们的状态(就是当返回有三个结果,第一个结果返回了,但是第二个结果没有返回,但是由于是yield,它记录下返回第一个结果时所有作用域以及变量的状态,因此,在当需要返回第二个结果的时候,它将会继续刚才的状态计算下去). >>> def test(N): for x in range(N): yiel

python中迭代器和生成器的区别

1 #!/usr/bin/python 2 def power(values): 3 for value in values: 4 print "powing %s" % value 5 yield value 6 def add(values): 7 for value in values: 8 if value % 2 == 0: 9 yield value + 3 10 else: 11 yield value + 2 12 elements = [1, 4, 7, 9, 12,