CIKM 2013 Paper CQARank: Jointly Model Topics and Expertise in Community Question Answering

中文简介: 本文对如何在问答社区对用户主题兴趣及专业度建模分析进行了研究,并且提出了针对此问题的统计图模型Topics Expertise Model.

论文出处:CIKM‘13.

英文摘要: Community Question Answering (CQA) websites, where people share expertise on open platforms, have become large repositories of valuable knowledge. To bring the best value out of these knowledge repositories, it is critically important for CQA services to know how to find the right experts, retrieve archived similar questions and recommend best answers to new questions. To tackle this cluster of closely related problems in a principled approach, we proposed Topic Expertise Model (TEM), a novel probabilistic generative model with GMM hybrid, to jointly model topics and expertise by integrating textual content model and link structure analysis. Based on TEM results, we proposed CQARank to measure user interests and expertise score under different topics. Leveraging the question answering history based on long-term community reviews and voting, our method could find experts with both similar topical preference and high topical expertise. Experiments carried out on Stack Overflow data, the largest CQA focused on computer programming, show that our method achieves significant improvement over existing methods on multiple metrics.

下载链接:http://dl.acm.org/citation.cfm?id=2505720

时间: 2024-10-03 22:37:31

CIKM 2013 Paper CQARank: Jointly Model Topics and Expertise in Community Question Answering的相关文章

NAACL 2013 Paper Mining User Relations from Online Discussions using Sentiment Analysis and PMF

中文简单介绍:本文对怎样基于情感分析和概率矩阵分解从网络论坛讨论中挖掘用户关系进行了深入研究. 论文出处:NAACL'13. 英文摘要: Advances in sentiment analysis have enabled extraction of user relations implied in online textual exchanges such as forum posts. However,recent studies in this direction only consi

Awesome Deep Vision

Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awesome-php and awesome-computer-vision. Maintainers - Jiwon Kim, Heesoo Myeong, Myungsub Choi, Jung Kwon Lee, Taeksoo Kim We are looking for a maintainer

Saw a tweet from Andrew Liam Trask, sounds like Oxford DeepNLP 2017 class have all videos slides practicals all up. Thanks Andrew for the tip!

Saw a tweet from Andrew Liam Trask, sounds like Oxford DeepNLP 2017 class have all videos/slides/practicals all up. Thanks Andrew for the tip! Preamble This repository contains the lecture slides and course description for the Deep Natural Language P

Awesome Torch

Awesome Torch This blog from: A curated list of awesome Torch tutorials, projects and communities. Table of Contents Tutorials Model Zoo Recurrent Networks Convolutional Networks ETC Libraries Model related GPU related IDE related ETC Links Tutorials

ACL 2015 selected paper

ACL 2015 selected paper 概述(1) 开完 ACL 2015 大会,选了自己感兴趣的几十篇论文,大部分是自己已经读过的,做了一些概述.相信里面有很多错误,欢迎指正.另外,图文并茂版本在公众号查看,长微博复制图片也许有很多错误显示不出来. 1. Text to 3D Scene Generation with Rich Lexical Grounding Angel Chang, Will Monroe, Manolis Savva, Christopher Potts, C

CVPR 2017 Paper list

CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro

paper: The years of pedestrain Detection,what have we learned?

Report of The Paper:"The Years of Pedestrain Detection, What Have We Learned?" 1:Introduction 主要的行人检测方法:"Viola&Jones variants",HOG+SVM,DPM,ConvNet 2:Dateset 1:不同的数据集 INRIA:最古老的也是有相对较少的图片:有高质量的行人注解在多种不同的环境(城市,沙滩等). ETH和TUD-Brussels:

(paper reading)Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions

给定一个包含一系列实体E的知识库,以及提到了M个已确定实体的文本集合,实体链接的目的是将文本中提到的每个实体m∈M链接到知识库中对应的实体e∈E上.如果文本中提到的实体在知识库中没有对应,则被称为unlinkable mentions,对这样的一类实体,一个实体链接系统会给它加上一个特殊的标签NIL. 一个典型的实体链接系统应该包含三个模块: Candidate entity generation 对M当中的每一个m,实体链接系统需要在知识库中找出候选的实体集合Em,主要的实现方法有: dict

model操作涉及的所有字段(API)

一旦 数据模型 创建完毕, 自然会有存取数据的需要.本文档介绍了由 models 衍生而来的数据库抽象API,及如何创建,得到及更新对象. 贯穿本参考, 我们都会引用下面的民意测验(Poll)应用程序: class Poll(models.Model): slug = models.SlugField(unique_for_month='pub_date') question = models.CharField(maxlength=255) pub_date = models.DateTime