数论/the second wave

扩展欧几里得算法。

void exgcd(int a,int b,int&x,int&y){
	if(!b) {
		x=1;y=0;return ;
	}
	exgcd(b,a%b,x,y);
	int temp=x;x=y;y=temp-a/b*y;
}

1)ax+by=c。

有解的条件是c%gcd(a,b)==0,因为ax+by=gcd(a,b)一定有解。

设解是x0,y0,则通解 x=x0+(b/gcd(a,b))*t  y=y0-(a/gcd(a,b))*t

2)ax ≡1 (mod m)

x为a关于m的逆元,即ax-my=1,若gcd(a,m)!=1 无解

设解是x0,则通解 x=x0+m*t 则a关于m的逆元是关于m同余的。则最小正整数解∈(0,m),那么x=(x0%abs(m)+abs(m))%abs(m);

noip2012同余方程:求出ax ≡1(mod n) 的最小正整数解。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define clr(x,c) memset(x,c,sizeof(x))
void exgcd(int a,int b,int&x,int&y){
	if(!b) {
		x=1;y=0;return ;
	}
	exgcd(b,a%b,x,y);
	int temp=x;x=y;y=temp-a/b*y;
}
int main(){
	int a,b,x,y;
	scanf("%d%d",&a,&b);
	exgcd(a,b,x,y);
	x=(x%b+b)%b;
	printf("%d\n",x);
	return 0;
}

3)求ax≡t(mod b);

可以求出ax+by=gcd(a,b)的解,若t%gcd(a,b)!=0无解。否则最小整数解x=(x0%abs(b/gcd)+abs(b/gcd))%abs(b/gcd)*(c/gcd)

eg

int cal(int a,int b,int c){
	int x,y;
	int gcd=exgcd(a,b,x,y);
	x*=c/gcd;
	b/=gcd;
	if(b<0) b=-b;
	return (x%b+b)%b;
}

  

时间: 2025-01-05 01:33:17

数论/the second wave的相关文章

NKOJ1236 a^b (数论定理的应用)

          a^b 对于任意两个正整数a,b(0<=a,b<10000)计算a b各位数字的和的各位数字的和的各位数字的和的各位数字的和. Input 输入有多组数据,每组只有一行,包含两个正整数a,b.最后一组a=0,b=0表示输入结束,不需要处理. Output 对于每组输入数据,输出ab各位数字的和的各位数字的和的各位数字的和的各位数字的和. Sample Input 2 3 5 7 0 0 Sample Output 8 5 思路: 数论定理:任何数除以9的余数等于各位数的和除

CodeForces 396A 数论 组合数学

题目:http://codeforces.com/contest/396/problem/A 好久没做数论的东西了,一个获取素数的预处理跟素因子分解写错了,哭瞎了,呵呵, 首先ai最大值为10^9,n为500,最坏的情况 m最大值为500个10^9相乘,肯定不能获取m了,首选每一个ai肯定是m的一个因子,然后能分解就把ai给分解素因子,这样全部的ai都分解了  就能得到m的 所有素因子 以及 所有素因子的个数,题目求的 是n个因子的 不同序列的个数,所以每次 只能选出n个因子,这n个因子由素因子

uva 1478 - Delta Wave(递推+大数+卡特兰数+组合数学)

题目链接:uva 1478 - Delta Wave 题目大意:对于每个位置来说,可以向上,水平,向下,坐标不能位负,每次上下移动最多为1, 给定n问说有多少种不同的图.结果对10100取模. 解题思路:因为最后都要落回y=0的位置,所以上升的次数和下降的次数是相同的,并且上升下降的关系满足出栈入栈的关系.即卡特兰数. 所以每次枚举i,表示有i个上升,i个下降,用组合数学枚举出位置,然后累加求和. C(2?in)?f(i)=C(2?i?2n)?f(i?1)?(n?2?i+1)?(n?2?i+2)

HDU 4861 Couple doubi(数论)

HDU 4861 Couple doubi 题目链接 题意:给定k,p,有k个球,每个球的值为1^i+2^i+...+(p-1)^i (mod p) (1 <= i <= k),现在两人轮流取球,最后球的值总和大的人赢,问先手是否能赢 思路:先手不可能输,非赢即平,那么只要考虑每种球的值, 利用费马小定理或欧拉定理,很容易得到该函数的循环节为p - 1, 那么i如果为p - 1的倍数,即为循环节的位置,那么每个值都为1,总和为p - 1 如果i不在循环节的位置,任取一个原根g,根据原根的性质,

UVA 10548 - Find the Right Changes(数论)

UVA 10548 - Find the Right Changes 题目链接 题意:给定a,b,c,表示货物的价值,求由A货物和B货物组成C货物有几种方法,判断有无解和是否有无限多种 思路:扩展欧几里得求通解,去计算上限和下限就能判断 代码: #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const long l

hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total Submission(s): 889    Accepted Submission(s): 207 Problem Description "今有物不知其数,三三数之有二,五五数之有三,七七数之有

[施工中]良心数论.

/* Copyright: xjjppm Author: xjjppm Date: 08-08-17 11:36 Description: Number Theory */ #include <map> #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> inline int input() { char c=getchar();int x=0,a=

信息学中的数论(一)

做oi题目的时候,遇到数论题会令我兴奋不已. 这一篇让我来聊一聊我学过的gcd,lcm,扩展欧几里得算法,逆元,组合数等. 这篇贴的代码都是未经过编译运行的,所以如果有错或有疑问请评论. 恩 那么什么是数论 和数学有关的非几何都是数论? 嘛,我也不知道定义,那么就草率地认为所有和数学有关的非计算几何知识都是数论吧. 我们先来聊一聊gcd. 这个东西,非常的有用. 它的名字叫最大公约数. 正常人都知道,有一个方法叫辗转相除法(证明略): int gcd(int a,int b) { if(!b)r

【数论Day3】进制问题 题解

数论进入第三天,进制问题是常用提醒,是数论的一个重要知识点,常考! 题面:http://www.cnblogs.com/ljc20020730/p/6935255.html 1.K进制数(Kbased.pas/c/cpp) 首先明确数据范围: [数据规模和约定] 对于40%的数据,a的长度不超过5. 对于100%的数据,a的长度不超过100000. 对于40%暴力枚举不多说,上代码: var t,i,k,tt:longint; a:qword; s:string; function pow(x,