hihoCoder #1097 最小生成树之Prim算法

原题网址,http://hihocoder.com/problemset/problem/1097

#1097 : 最小生成树一·Prim算法

时间限制:10000ms

单点时限:1000ms

内存限制:256MB

描述

最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了!

但 是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就 可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A、B、C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两条 道路连通的)。

提示:不知道为什么Prim算法和Dijstra算法很像呢Σ(っ °Д °;)っ 。

输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为1个整数N,表示小Hi拥有的城市数量。

接下来的N行,为一个N*N的矩阵A,描述任意两座城市之间建造道路所需要的费用,其中第i行第j个数为Aij,表示第i座城市和第j座城市之间建造道路所需要的费用。

对于100%的数据,满足N<=10^3,对于任意i,满足Aii=0,对于任意i, j满足Aij=Aji, 0<Aij<10^4.

输出

对于每组测试数据,输出1个整数Ans,表示为了使任意两座城市都可以通过所建造的道路互相到达至少需要的建造费用。

样例输入

5

0 1005 6963 392 1182

1005 0 1599 4213 1451

6963 1599 0 9780 2789

392 4213 9780 0 5236

1182 1451 2789 5236 0

样例输出

4178

 1 #include <cstdio>
 2 #include <string.h>
 3 #include <algorithm>
 4 using namespace std;
 5 const int N = 1e3+100, INF = 0x3f3f3f3f;
 6 int edge[N][N]; //邻接矩阵
 7 int Prim(int n) //Prim算法
 8 {
 9     bool vis[N] = {0};  //记录已加入的顶点
10     int D[N], MIN, tag, sum = 0;
11     memcpy(D, edge[0], sizeof(D));  //已顶点0为起点初始化数组D
12     vis[0] = true;  //记录顶点0已加入
13     for(int i=1; i<n; ++i)
14     {
15         MIN = 0x3f3f3f3f;   //寻找离已加入的顶点距离最近的点
16         for(int j=1; j<n; ++j)
17             if(!vis[j] && D[j] < MIN)
18                 MIN = D[j], tag = j;
19         vis[tag] = true;    //将找到的最近点加入
20         for(int j=1; j<n; ++j)
21             if(!vis[j])
22                 D[j] = min(D[j], edge[tag][j]); //更新D数组
23     }
24     for(int i=0; i<n; ++i)
25         sum += D[i];
26     return sum;
27 }
28 int main(void)
29 {
30     int n;
31     while(~scanf("%d", &n))
32     {
33         for(int i=0; i<n; ++i)
34             for(int j=0; j<n; ++j)
35                 scanf("%d", &edge[i][j]);   //用邻接矩阵保存图
36         printf("%d\n", Prim(n));
37     }
38 }
时间: 2024-10-12 10:02:27

hihoCoder #1097 最小生成树之Prim算法的相关文章

hihoCoder#1097 最小生成树一&#183;Prim算法

原题地址 Prime算法,每次挑选一个距离原点最近的节点,然后收缩(visited为true) 跟Dijkstra真的很像 代码: 1 #include <iostream> 2 #include <cstring> 3 4 using namespace std; 5 6 #define MAX_POINT 1024 7 8 int N; 9 int g[MAX_POINT][MAX_POINT]; 10 bool visited[MAX_POINT]; 11 12 int pr

Hihocoder 之 #1097 : 最小生成树一&#183;Prim算法 (用vector二维 模拟邻接表,进行prim()生成树算法, *【模板】)

#1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过

hihoCoder - hiho一下 第二十六周 - A - 最小生成树一&#183;Prim算法

题目1 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来--小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两

hihocoder hiho一下 第二十六周 最小生成树一&#183;(Prim算法)

题目1 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就 可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这

hiho一下 第二十六周---最小生成树一&#183;Prim算法

最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来--小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两条道路连通的

最小生成树(prim算法,Kruskal算法)c++实现

1.生成树的概念 连通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成树. 生成树是连通图的极小连通子图.所谓极小是指:若在树中任意增加一条边,则将出现一个回路:若去掉一条边,将会使之变成非连通图. 生成树各边的权值总和称为生成树的权.权最小的生成树称为最小生成树. 2.最小生成树的性质用哲学的观点来说,每个事物都有自己特有的性质,那么图的最小生成树也是不例外的.按照生成树的定义,n 个顶点的连通网络的生成树有 n 个顶点.n-1 条边. 3.构造最小生成树,要解决以下两个问题

最小生成树之Prim算法

Prim算法: 假设N = (V,{E})是连通网,TE是N上最小生成树中边的集合.算法从U={u0}(u0属于V),TE={}开始,重复执行下述操作:在所有u属于U,v属于V-U的边(u,v)属于E中找到一条代价最小的边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止,此时TE中必有n-1条边,则T=(V,{TE})为N的最小生成树. 为实现这个算法,需附设一个辅助数组closedge,以记录从U到V-U具有最小代价的边.对每个顶点vi属于V-U,在辅助数组中存在一个相应分量clos

最小生成树的Prim算法

构造最小生成树的Prim算法 假设G=(V,E)为一连通网,其中V为网中所有顶点的集合,E为网中所有带权边的集合.设置两个新的集合U和T,其中集合U用于存放G的最小生成树的顶点,集合T用于存放G的最小生成树中的边.令集合U的初值为U={u0}(假设构造最小生成树时是从顶点u0出发),集合T的初值为T={}.Prim算法的思想是:在连通网中寻找一个顶点落入U集,另外一个顶点落入V-U集的这个顶点加入到U集中,然后继续寻找一顶点在U集而另一顶点在V-U集且权值最小的边放入T集;如果不断重复直到U=V

数据结构--图--最小生成树(Prim算法)

构造连通网的最小生成树,就是使生成树的边的权值之和最小化.常用的有Prim和Kruskal算法.先看Prim算法:假设N={V,{E}}是连通网,TE是N上最小生成树中边的集合.算法从U={u0}(uo属于V),TE={}开始,重复执行下述操作:在所有u属于U,v属于V-U的边(u,v)属于E中找到代价最小的一条边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止.此时TE中必有n-1条边,T={V,{TE}}为N的最小生成树.为实现此算法,需另设一个辅助数组closedge,以记录从U