NOIP模拟赛-旅行者问题 解题报告

题目 :http://www.tsinsen.com/P9143

题是我发现。想测可以测。已经分享出去了。

旅行者问题

【问题描述】

lahub是一个旅行者的粉丝,他想成为一个真正的旅行者,所以他计划开始一段旅行。lahub想去参观n个目的地(都在一条直道上)。lahub在起点开始他的旅行。第i个目的地和起点的距离为ai千米(ai为非负整数)。不存在两个目的地和起点的距离相同。

从第i个目的地走到第j个目的地所走的路程为 |ai-aj|千米。我们把参观n个目的地的顺序称作一次“旅行”。lahub可以参观他想要参观的任意顺序,但是每个目的地有且只能被参观一次(参观顺序为n的排列)。

lahub把所有可能的“旅行”都写在一张纸上,并且记下每个“旅行”所要走的路程。他对所有“旅行”的路程之和的平均值感兴趣。但是他觉得计算太枯燥了,所以就向你寻求帮助。

【输入格式】

第一行一个正整数n。

第二行n个非负整数a1,a2,....,an(1≤ai≤10^7)。

【输出格式】

两个整数,答案用最简分数形式输出,第一个为分子,第二个为分母。

【输入样例】

3

2 3 5

【输出样例】

22 3

【样例提示】

样例有6种可能的旅行:

[2, 3, 5]: 该“旅行”的路程:|2 – 0| + |3 – 2| + |5 – 3| = 5;

[2, 5, 3]: |2 – 0| + |5 – 2| + |3 – 5| = 7;

[3, 2, 5]: |3 – 0| + |2 – 3| + |5 – 2| = 7;

[3, 5, 2]: |3 – 0| + |5 – 3| + |2 – 5| = 8;

[5, 2, 3]: |5 – 0| + |2 – 5| + |3 – 2| = 9;

[5, 3, 2]: |5 – 0| + |3 – 5| + |2 – 3| = 8.

答案为 1/6 * (5+7+7+8+9+8)=44/6=22/3

【数据范围】

30% n<=10

50% n<=1000

100% n<=100000

分析:

这道题的不免会让人想起用DFS搜下去。打出来个全排列出来。为了全排列可能还用预处理两点之间的位置。不过。做这些事情。恩。还是给WA了。

而这道题再进一步思考呢?会让人想到。如果,只是对每条边进行一个处理呢?思考--->每条边(两个点之间的距离)对最终的答案的影响。那么如果我们走了这条边,我们接下来会有多少种路可以走呢,也就是接下来有多少种组合呢? 假设我们选择了Ai 与 Aj 这条路,接下来就会有(n-2)!种方案。那么Ai与Aj这条路就会走(n-2)!次。而这条路又有(n-1)种选择。因为我们可以选择在什么时候再走。这个时候方案数就又多了。是 (n-2)!*(n-1) ==(n-1)!。但是我们光枚举了两点之间的距离,没有枚举从起点开始的路径。而从头开始的路径的位置是固定的。假设我们从0到Ai。那么走完之后就有(n-1)!种方案。/-乘法原理-/。这样每次的情况又枚举完了。乘上权值就是我们最后的总和。

最关键的就是我们如何去枚举整个sum(abs(A[i]-A[j]);首先,我们可以确定的是。我们就只用计算从i到j 并且 (i>j)这样计算,总路程就×2就好(走过去,走回来)。

我们可以用递推来实现整个计算。我们可以发现一个规律:

假设a1 > a2 > a3 > a4,

以Ai为结尾的Ai-Aj的和为Si,

那么:

S2 = a1 - a2

S3 = a1 - a3 + a2 - a3 = (a1 - a2 + a2 - a3) + a2 - a3 = S2 + 2 *(a2 - a3)

S4 = a1 - a4 + a2 - a4 + a3 - a4 = (a1 - a3 + a3 - a4) + (a2 - a3 + a3 - a4) + (a3 - a4)

= S3 + 3 * (a3 - a4)

我们发现这里的S是可以递推的。

最后在计算结果的时候 分子是总和。而分母是总方案数n! 分数相约之后。分母就只剩一个n。那么我们就只需要计算gcd再同时除以gcd。

放出代码:

#include<cstdio>
#include<algorithm>
using namespace std;
int line[1000001];
int n;
long long int gcd(long long int a,long long int b)
{
    return a%b==0 ? b : gcd(b,a%b);
}
int cmp(int a,int b)
{
    return a>b;
}
int main()
{
    freopen("tourist.in","r",stdin);
    freopen("tourist.out","w",stdout);
    long long int sum=0;
    scanf("%d",&n);
    for(int i=1;i<=n;++i)
    {
    scanf("%d",&line[i]);
    sum+=line[i];
    }
    sort(line+1,line+1+n,cmp);
    long long int k=0,ans=0;
    for(int i=2;i<=n;++i)
    {
    k=k+(i-1)*(line[i-1]-line[i]);
    ans+=k;
    }
    sum+=ans*2;
    long long int c=gcd(sum,n);
    printf("%I64d %I64d",sum/c,n/c);
    fclose(stdin);
    fclose(stdout);
    return 0;
}
时间: 2024-10-03 22:41:41

NOIP模拟赛-旅行者问题 解题报告的相关文章

2019模拟赛09场解题报告

目录 2019模拟赛09场解题报告 目录la~~ 题一:瞬间移动 题二:食物订购 题三:马蹄印 题四:景观美化 2019模拟赛09场解题报告 标签(空格分隔): 解题报告 Forever_chen 2019.8.20 目录la~~ 题一:瞬间移动 [题面] 有一天,暮光闪闪突然对如何将一个整数序列a1,a2,...,an排序为一个不下降序列起了兴趣.身为一只年轻独角兽的她,只能进行一种叫做"单元转换"(unit shift)的操作.换句话说,她可以将序列的最后一个元素移动到它的起始位置

Noip模拟考试6:解题报告

Peter喜欢玩数组.NOIP这天,他从Jason手里得到了大小为n的一个正整数数组.Peter求出了这个数组的所有子段和,并将这n(n+1)/2个数降序排序,他想知道前k个数是什么. 不难想到,从最大字段和向下更新. 用set实现 介绍一下set:用法与priority_queue基本相同,区别是,set有自动去重,而priority_queue将所有元素放入. 然后通过三元组,分别记录权值,左端与右端. #include<cstdio> #include<algorithm>

Noip模拟考试八:解题报告

1. 鼎纹(grain.cpp/.c/.pas)[问题描述]据说鼎纹的 种制造 式是 铜模印出来的,这是我国古代劳动 智慧的结晶.铜模印过的地 ,会留下深深的印记,经过时间的炼化,洗练成历史的遗存.聪明的古代劳动人民拥有一个 a 行 b 列的铜模,每个位置要么是 0(代表这个点是平的),要么是 1(代表这个点是凸起的).他们想造 个 n 行 m 列的鼎 ,其中每个位置也都是 0 或 1,表示经过若干 次印后,每个位置的结果.有一些要求.铜模是不能旋转和翻转的:在印的过程当中,铜模的凸起不能出现在

Noip模拟考试7:解题报告

1 . 二叉树( ( binary .cpp/c/pas)[问题描述]二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值:(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值:(3)左.右子树也分别为二叉排序树:(4)没有键值相等的结点.完全二叉树:只有最下面的两层结点度能够小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树. 给出N个数,且这N个数构成1至N的排列.现在需要你按顺序构建一棵二叉排序树,并按

NOIP模拟2017.6.11解题报告

T1: 水题: 代码: #include <cstdio> #include <iostream> #include <algorithm> using namespace std; #define maxn 100005 int n,ai[maxn],Max[maxn],bi[maxn],size; int tree[maxn]; inline void in(int &now) { char Cget=getchar();now=0; while(Cget&

【简单思考】noip模拟赛 NTR酋长

NTR酋长 (ntr.pas/.c/.cpp) 黄巨大终于如愿以偿的进入了czy的后宫中……但是czy很生气……他要在黄巨大走到他面前的必经之路上放上几个NTR酋长来阻挡黄巨大. 众所周知,NTR酋长有一个技能是沟壑(F).它会在地图上产生一条长长的障碍物阻挡人前进.Czy打算在一个n*m的矩形(必经之路?)中放上NTR酋长.NTR酋长要一个一个放下去,而且每放一个都会向四角倾斜的方向放出无限长的沟壑,而已经被沟壑挡住的地方就不能再放NTR酋长了. 请注意:不会出现沟壑的路径挡住另一个沟壑的情况

【noip模拟赛】 射击

这题似乎是什么安阳一中的模拟题,不管了,反正是学长出的noip模拟赛里面的题目.... 射击(shoot.pas/.c/.cpp) 时间限制:1s,内存限制128MB 题目描述: 据史书记载,对越反击战时期,有位中国侦察兵,他的代号叫814.一天他执行狙击任务,他的任务地区是n座恰巧在一条直线上的山.这些山所在直线恰巧为东西走向,山从东到西依次编号为1~n.一天814隐藏在编号为k的山上,每座山上都有1个目标. 814也非常的厉害,任务结束时杀了很多人,可是史书中只记载了两点: 1:814一定攻

NOIP模拟赛

#1[Nescafé 31]杯NOIP模拟赛 t1 题意:n*m的棋盘上从(1,1)走到(n,m),只能向下或向右,一些格子有老鼠,每个老鼠互不相同,当处于与老鼠有重边的格子时,视为看见了这只老鼠,求到终点看到最少的不同老鼠数. 分析:DP 由于求得是看到的不同的老鼠数目,不能直接用过河卒做,因为同一个位置的老鼠可能会统计多次,我们还需要增加一维即方向. f[i,j,0]表示到从上面一个格子走到(i,j)时最少老鼠数,f[i,j,1]表示左边. f[i,j,0]:=min(f[i-1,j,0]+

NOIP模拟赛 6.29

2017-6-29 NOIP模拟赛 Problem 1 机器人(robot.cpp/c/pas) [题目描述] 早苗入手了最新的Gundam模型.最新款自然有着与以往不同的功能,那就是它能够自动行走,厉害吧. 早苗的新模型可以按照输入的命令进行移动,命令包括‘E’.‘S’.‘W’.‘N’四种,分别对应东南西北.执行某个命令时,它会向对应方向移动一个单位.作为新型机器人,它可以执行命令串.对于输入的命令串,每一秒它会按命令行动一次.执行完命令串的最后一个命令后,会自动从头开始循环.在0时刻时机器人