JVM GC (一)

一。内存分布

1.默认generation分布

2.parallel collector的generation 分布

二。 内存划分

1. Young Generation

1 ) 生命周期很短的对象,归为 young generation 。由于生命周期很短,这部分对象在 gc 的时候,很大部分的对象已经成为非活动对象。因此针对 young

generation 的对象,采用 copy 算法,只需要将少量的存活下来的对象 copy 到 to space 。存活的对象数量越少,那么copy 算法的效率越高。

2 )young generation 的 gc 称为 minor gc 。经过数次 minor gc ,依旧存活的对象,将被移出 young generation ,移到 tenured generation

3 ) young generation 分为:

1.3.1  eden :每当对象创建的时候,总是被分配在这个区域

1.3.2  survivor1 : copy 算法中的 from space

1.3.3  survivor2 : copy 算法中的 to sapce (备注:其中 survivor1 和 survivor2 的身份在每次 minor gc 后被互换)

4  )minor gc 的时候,会把 eden+survivor1(2) 的对象 copy 到 survivor2(1) 去。

2.Tenured Generation

1  )生命周期较长的对象,归入到 tenured generation 。一般是经过多次 minor gc ,还 依旧存活的对象,将移入到 tenured generation 。

(当然,在 minor gc 中如果存活的对象的超过 survivor 的容量,放不下的对象会直接移入到 tenured generation )

2  )tenured generation 的 gc 称为 major gc ,就是通常说的 full gc 。

3  )采用 compactiion 算法。由于 tenured generaion 区域比较大,而且通常对象生命周期都比较常, compaction 需要一定时间。

所以这部分的 gc 时间比较长。

4 ) minor gc 可能引发 full gc 。当 eden + from space 的空间大于 tenured generation 区的剩余空间时,会引发 full gc 。这是悲观算法,

要确保 eden + from space 的对象如果都存活,必须有足够的 tenured generation 空间存放这些对象。

3.  Permanet Generation

1 ) 该区域比较稳定,主要用于存放 classloader 信息,比如类信息和 method 信息。

2 ) 对于 spring hibernate 这些需要动态类型支持的框架,这个区域需要足够的空间。

三。回收算法

1.引用计数(Reference Counting)

  比较古老的回收算法。原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数。垃圾回收时,只用收集计数为0的对象。

  此算法最致命的是无法处理循环引用的问题。

2.标记-清除(Mark-Sweep)

  此算法执行分两阶段。第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。

  此算法需要暂停整个应用,同时,会产生内存碎片。

3.复制(Copying)

  此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外 一个区域中。

  此算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不过出现“碎片”问题。

  当然,此算法的缺点也是很明显的,就是需要两倍内存空间。

4.标记-整理(Mark-Compact)

  此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,

  第一阶段从根节点开始标记所有被引用对象,

  第二阶段遍历 整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。

  此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。

5.增量收集(Incremental Collecting)

  实施垃圾回收算法,即:在应用进行的同时进行垃圾回收。

6.分代(Generational Collecting)

  基于对对象生命周期分析后得出的垃圾回收算法。把对象分为年青代、年老代、持久代,对不同生命周期的对象使用不同的算法进行回收

 

四。收集器

1.serial collector

使用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高。但是,也无法使用多处理器的优势,所以此收集器适合单处理器机器。

当然,此收集器也可以用在小数据量(100M 左右)情况下的多处理器机器上。可以使用-XX:+UseSerialGC 打开。

2.parallel  collector 

适用情况:对吞吐量有高要求,多CPU、对应用响应时间无要求的中、大型应用。举例:后台处理、科学计算。

对年轻代进行并行垃圾回收,因此可以减少垃圾回收时间。一般在多线程多处理器机器上使用。使用-XX:+UseParallelGC 打开。

在Java SE6.0中可以堆年老代进行并行收集。使用-XX:+UseParallelOldGC 打开。

此收集器可以进行如下配置:

-XX:ParallelGCThreads=<N>   并行垃圾回收的线程数。此值可以设置与机器处理器数量相等

-XX:MaxGCPauseMillis=<N>   垃圾回收时的最长暂停时间

-XX:GCTimeRatio=<N>         垃圾回收时间与非垃圾回收时间的比值 ,公式为1/(1+N) 。

例如,-XX:GCTimeRatio=19时,表示5%的时间用于垃圾回收。默认情况为99,即1%的时间用于垃圾回收。

3.current collector 

适用情况:对响应时间有高要求,多CPU、对应用响应时间有较高要求的中、大型应用。如:Web服务器/应用服务器、电信交换、集成开发环境。

使用-XX:+UseConcMarkSweepGC 打开。

并发收集器使用多处理器换来短暂的停顿时间 。在一个N个处理器的系统上,并发收集时使用K个可用处理器进行回收,一般情况下1 <= K <= N/4

在只有一个处理器的主机上使用并发收集器 ,设置为incremental mode 模式也可获得较短的停顿时间

1)浮动垃圾 :由于在应用运行的同时进行垃圾回收,所以有些垃圾可能在垃圾回收进行完成时产生,这样就造成了“Floating Garbage”,这些垃圾需要在

下次垃圾回收周期时才能回收掉。所以,并发收集器一般需要20% 的预留空间用于这些浮动垃圾。

2)Concurrent Mode Failure :因为并发收集在应用运行时,通过设置-XX:CMSInitiatingOccupancyFraction=<N> 指定还有多少剩余堆时开始执行并发收集

保证收集完成之前有足够的内存空间供程序使用。

时间: 2024-12-30 02:20:34

JVM GC (一)的相关文章

Java性能优化之JVM GC(垃圾回收机制)

Java的性能优化,整理出一篇文章,供以后温故知新. JVM GC(垃圾回收机制) 在学习Java GC 之前,我们需要记住一个单词:stop-the-world .它会在任何一种GC算法中发生.stop-the-world 意味着JVM因为需要执行GC而停止了应用程序的执行.当stop-the-world 发生时,除GC所需的线程外,所有的线程都进入等待状态,直到GC任务完成.GC优化很多时候就是减少stop-the-world 的发生. JVM GC回收哪个区域内的垃圾? 需要注意的是,JV

JVM GC调优一则--增大Eden Space提高性能

缘起 线上有Tomcat升级到7.0.52版,然后有应用的JVM FullGC变频繁,在高峰期socket连接数,Cpu使用率都暴增. 思路 思路是Tomcat本身的代码应该是没有问题的,有问题的可能是应用代码升级,或者环境改变了,总之Tomcat的优先级排在最后. 先把应用的heap dump下来分析下: jmap -dump:format=b,file=path pid 用IBM的Heap Analyser分析,发现dubbo rpc调用的RpcInvocation对象和taglibs的Si

【甘道夫】HBase随机宕机事件处理 &amp; JVM GC回顾

一.引言 本文记录了困扰团队两周的HBase随机宕机事件的解决方案,并回顾了JVM GC调优基础知识,供各位参考. 欢迎转载,请注明出处: http://blog.csdn.net/u010967382/article/details/42394031 二.实验环境 16台虚拟机,每台4G内存,1核CPU,400G硬盘 Ubuntu 14.04 LTS (GNU/Linux 3.13.0-29-generic x86_64) CDH5.2.0套装(包括相应版本的Hadoop,HIVE,Hbase

【转载】Java性能优化之JVM GC(垃圾回收机制)

章来源:https://zhuanlan.zhihu.com/p/25539690 Java的性能优化,整理出一篇文章,供以后温故知新. JVM GC(垃圾回收机制) 在学习Java GC 之前,我们需要记住一个单词:stop-the-world .它会在任何一种GC算法中发生.stop-the-world 意味着JVM因为需要执行GC而停止了应用程序的执行.当stop-the-world 发生时,除GC所需的线程外,所有的线程都进入等待状态,直到GC任务完成.GC优化很多时候就是减少stop-

深入浅出 JVM GC(3)

# 前言 在 深入浅出 JVM GC(2) 中,我们介绍了一些 GC 算法,GC 名词,同时也留下了一个问题,就是每个 GC 收集器的具体作用.有哪些 GC 收集器呢? Serial 串行收集器(只适用于堆内存 256M 以下的 JVM ) ParNew 并行收集器(Serial 收集器的多线程版本) Parallel Scavenge (PS 收集器,该收集器以吞吐量为主要目的,是1.8的默认 GC) CMS 收集器(该收集器全称 Concurrent Mark Sweep,是一种关注最短停顿

深入浅出 JVM GC(2)

# 前言 在 深入浅出 JVM GC(1) 中,限于上篇文章的篇幅,我们留下了一个问题 : 如何回收? 这篇文章将重点讲述这个问题. 在上篇文章中,我们也列出了一些大纲,今天我们就按照那个大纲来逐个讲解.在此,我将大纲复制过来. 垃圾回收算法 标记清除算法 复制算法 标记整理算法 分代收集算法(堆如何分代) 有哪些垃圾收集器 Serial 串行收集器(只适用于堆内存256m 以下的 JVM ) ParNew 并行收集器(Serial 收集器的多线程版本) Parallel Scavenge (P

JVM GC算法 垃圾回收器

JVM的垃圾回收算法有三种: 1.标记-清除(mark-sweep):啥都不说,直接上图 2.标记-整理(mark-compact) 3.复制(copy) 分代收集算法                                                    目前的垃圾回收都采用分代收集算法.也就衍生了很多垃圾收集器 "分代收集"(Generational Collection)算法,把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法. 在新生

JVM GC总结

一:Java内存区的简单介绍 1.堆(Heap) JVM初始分配的内存由-Xms指定,默认是物理内存的1/64. JVM最大分配的内存由-Xmx指定,默认是物理内存的1/4. 默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制,可以由-XX:MinHeapFreeRatio=参数,来指定. 默认空余堆内存小于70%时,JVM会减少堆直到-Xms的最小限制,可以由-XX:MaxHeapFreeRatio=参数,来指定. 注:服务器一般设置-Xms和-Xmx相等以避免每次GC后频繁的

JVM—GC回收机制

JVM垃圾回收机制 JVM分别对新生代和旧生代采用不同的垃圾回收机制. 新生代的GC: 新生代通常存活时间较短,因此基于Copying算法来进行回收,所谓Copying算法就是扫描出存活的对象,并复制到一块新的完全未使用的空间中,对应于新生代,就是在Eden和FromSpace或ToSpace之间copy.新生代采用空闲指针的方式来控制GC触发,指针保持最后一个分配的对象在新生代区间的位置,当有新的对象要分配内存时,用于检查空间是否足够,不够就触发GC.当连续分配对象时,对象会逐渐从eden到

JVM GC之一找出不可达对象并回收

JAVA运行时数据区域 1.程序计数器:当前线程所执行的字节码的行号指示器.一个处理器只会执行一条线程中的指令,为了线程切换后能回复到正确的执行位置,所以每条线程都需要一个独立的计数器.各条线程之间互不影响,独立存储,属于'线程私有'内存. 2.java虚拟机栈:描述的是JAVA方法执行的内存模型:每个方法执行的时候都会创建一个栈帧用于存储局部变量表.操作数栈.动态链接.方法出口等信息.每个方法的被调用直至执行完成的过程,就对应着一个栈帧在虚拟机中从入栈到出栈的过程.所以也是线程私有的. 3.本