1.4. 生成器

1. 什么是生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

2. 创建生成器方法1

要创建一个生成器,有很多种方法。第一种方法很简单,只要把一个列表生成式的 [ ] 改成 ( )

In [15]: L = [ x*2 for x in range(5)]

In [16]: L
Out[16]: [0, 2, 4, 6, 8]

In [17]: G = ( x*2 for x in range(5))

In [18]: G
Out[18]: <generator object <genexpr> at 0x7f626c132db0>

In [19]:

创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出L的每一个元素,但我们怎么打印出G的每一个元素呢?如果要一个一个打印出来,可以通过 next() 函数获得生成器的下一个返回值:

In [19]: next(G)
Out[19]: 0

In [20]: next(G)
Out[20]: 2

In [21]: next(G)
Out[21]: 4

In [22]: next(G)
Out[22]: 6

In [23]: next(G)
Out[23]: 8

In [24]: next(G)
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-24-380e167d6934> in <module>()
----> 1 next(G)

StopIteration: 

In [25]:

生成器保存的是算法,每次调用 next(G) ,就计算出 G 的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出 StopIteration 的异常。当然,这种不断调用 next() 实在是太变态了,正确的方法是使用 for 循环,因为生成器也是可迭代对象。所以,我们创建了一个生成器后,基本上永远不会调用 next() ,而是通过 for 循环来迭代它,并且不需要关心 StopIteration 异常。

3. 创建生成器方法2

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的 for 循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

In [28]: def fib(times):
   ....:     n = 0
   ....:     a,b = 0,1
   ....:     while n<times:
   ....:         print(b)
   ....:         a,b = b,a+b
   ....:         n+=1
   ....:     return ‘done‘
   ....: 

In [29]: fib(5)
1
1
2
3
5
Out[29]: ‘done‘

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

In [30]: def fib(times):
   ....:     n = 0
   ....:     a,b = 0,1
   ....:     while n<times:
   ....:         yield b
   ....:         a,b = b,a+b
   ....:         n+=1
   ....:     return ‘done‘
   ....: 

In [31]: F = fib(5)

In [32]: next(F)
Out[32]: 1

In [33]: next(F)
Out[33]: 1

In [34]: next(F)
Out[34]: 2

In [35]: next(F)
Out[35]: 3

In [36]: next(F)
Out[36]: 5

In [37]: next(F)
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-37-8c2b02b4361a> in <module>()
----> 1 next(F)

StopIteration: done

在上面fib 的例子,我们在循环过程中不断调用 yield ,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用 next() 来获取下一个返回值,而是直接使用 for 循环来迭代:

In [38]: for n in fib(5):
   ....:     print(n)
   ....:
1
1
2
3
5

In [39]:

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

In [39]: g = fib(5)

In [40]: while True:
   ....:     try:
   ....:         x = next(g)
   ....:         print("value:%d"%x)
   ....:     except StopIteration as e:
   ....:         print("生成器返回值:%s"%e.value)
   ....:         break
   ....:
value:1
value:1
value:2
value:3
value:5
生成器返回值:done

In [41]:

4. send

例子:执行到yield时,gen函数作用暂时保存,返回i的值;temp接收下次c.send("python"),send发送过来的值,c.next()等价c.send(None)

In [10]: def gen():
   ....:     i = 0
   ....:     while i<5:
   ....:         temp = yield i
   ....:         print(temp)
   ....:         i+=1
   ....:

使用next函数

In [11]: f = gen()

In [12]: next(f)
Out[12]: 0

In [13]: next(f)
None
Out[13]: 1

In [14]: next(f)
None
Out[14]: 2

In [15]: next(f)
None
Out[15]: 3

In [16]: next(f)
None
Out[16]: 4

In [17]: next(f)
None
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-17-468f0afdf1b9> in <module>()
----> 1 next(f)

StopIteration:

使用__next__()方法

In [18]: f = gen()

In [19]: f.__next__()
Out[19]: 0

In [20]: f.__next__()
None
Out[20]: 1

In [21]: f.__next__()
None
Out[21]: 2

In [22]: f.__next__()
None
Out[22]: 3

In [23]: f.__next__()
None
Out[23]: 4

In [24]: f.__next__()
None
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-24-39ec527346a9> in <module>()
----> 1 f.__next__()

StopIteration:

使用send

In [43]: f = gen()

In [44]: f.__next__()
Out[44]: 0

In [45]: f.send(‘haha‘)
haha
Out[45]: 1

In [46]: f.__next__()
None
Out[46]: 2

In [47]: f.send(‘haha‘)
haha
Out[47]: 3

In [48]:

总结

生成器是这样一个函数,它记住上一次返回时在函数体中的位置。对生成器函数的第二次(或第 n 次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变。

生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。

生成器的特点:

  1. 节约内存
  2. 迭代到下一次的调用时,所使用的参数都是第一次所保留下的,即是说,在整个所有函数调用的参数都是第一次所调用时保留的,而不是新创建的
时间: 2024-10-05 10:27:57

1.4. 生成器的相关文章

Day4 - 迭代器&amp;生成器、装饰器、Json &amp; pickle 数据序列化、软件目录结构规范

---恢复内容开始--- 本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 需求:列表a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求把列表里的每个值加1 1 a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 2 b = [] 3 for i in a: 4 b.append(i+1) 5 a = b 6 print(a) 普通青

装饰器、生成器、迭代器

装饰器的前奏 装饰器:本质是函数 功能:就是装饰成其他函数  就是为其他函数添加附加功能的 高阶函数+嵌套函数=装饰器 原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 总结一句话:装饰器对被装饰的函数是完全透明的 实现装饰器的只是储备: 1.函数名即"变量"   将函数体赋值给变量   和内存回收机制一样 2.高阶函数 2.1.把函数名作为实参传递给形参(可返回被修饰函数的地址)(不修改源代码的情况可添加新的功能) 2.2返回值中包含函数地址(不修改函数的调

Python面试题之生成器/迭代器

1.为什么要有生成器? 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了.所以,如果列表元素可以按照某种算法推算出来,那我们是否可以... 在循环的过程中不断推算出后续的元素,这样就不必创建完整的list,从而节省大量的空间.在Python中,这种一边循环一边计算的机制,称为生成器:generator. 第一种方法很简单,只

4.利用python生成器实现简单的“生产者消费者”模型

假如说,没有生成器这种对象,那么如何实现这种简单的"生产者消费者"模型呢? import time def producer(): pro_list = [] for i in range(10000): print "包子%s制作ing" %(i) time.sleep(0.5) pro_list.append("包子%s" %i) return pro_list def consumer(pro_list): for index,stuffe

Python之路22-列表生成式和函数生成器

#列表生成式 list1 = [i*2 for i in range(1,11)] #生成器,在调用时才会生成相应的数据 list = (x*2 for x in range(1,1000000)) #list.__next__() #函数生成器 def fib(max):     n,a,b = 0,0,1     while n < max:         #print (b)         yield b         a,b = b,a+b         n = n + 1   

Python高级特性:迭代器和生成器 -转

在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了. 迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常. __iter__()和next()

yield生成器及字符串的格式化

一.生成器 1 def ran(): 2 print('Hello world') 3 yield 'F1' 4 5 print('Hey there!') 6 yield 'F2' 7 8 print('goodbye') 9 yield 'F3' 10 11 ret = ran() # ran()称为生成器函数,ret才是生成器,仅仅具有一种生成能力,函数内部要有关键字yield 12 print(ret) 13 14 res = ret.__next__() #对生成器进行循环操作,遇到y

python-学习笔记之-Day5 双层装饰器 字符串格式化 python模块 递归 生成器 迭代器 序列化

1.双层装饰器 #!/usr/bin/env python # -*- coding: utf-8 -*- # author:zml LOGIN_INFO = False IS_ADMIN = False   def check_log(func): def inner(): res = func() if LOGIN_INFO: print('验证成功!') return res else: print('验证失败!') return inner   def check_admin(func)

彩票生成器--36选7(不重复)

import java.util.Random; public class suijishu { /** * @param args */ public static void main(String[] args) { // TODO 自动生成的方法存根 //36选7,不重复 //第一步,初始化 定义数组,建随机数组生成器 int []caiPiao=new int[7]; Random ran = new Random(); //第二步,生成 //随机生成7个数 for(int i=0;i<

iOS设计模式——生成器模式

选择建造自己的房子的人会把工程外包给承包商.单一承包商不能建造整个房子,他将其分解为几个部分,然后转包给几个实际的建筑商,他们懂得如何将零部件组装起来.房子由由风格.颜色和尺寸各不相同的部件组成.客户告诉承包商房子里都要有什么,然后承包商协调各房屋建筑商,决定需要做什么.应该如何建造,建筑商就如何施工.建房子是个复杂过程,单凭一双手就想建房子,即便可能也非常困难.如果承包商(指导者)与懂得如何建造的建筑商相互协调,这一过程简单得多且更易管理. 有时,构建某些对象有多种不同方式.如果这些逻辑包含在