paper 113:Bhattacharyya distance

在统计理论中,Bhattacharyya距离用来度量两个离散或连续概率分布的相似性。它与Bhattacharyya系数(Bhattacharyya coefficient)高度相关,后者是用来度量两个统计样本的重叠度的。所有这些命名都是为了纪念A. Bhattacharyya,一个在1930年工作于印度统计局的统计学家。该系数可以用来度量两个样本集的相似性。它通常在分类问题中被用来判断类别的可分性。

目录

·定义

·Bhattacharyya系数

定义

对于定义在同一个定义域X上的两个离散概率分布p和q来说,它们之间的Bhattacharyya距离可定义如下:

这里

被称为Bhattacharyya系数。

对于连续概率分布,Bhattacharyya系数可以定义如下:

在以上两种情况下,0<=BC<=1并且0<=DB<=∞。DB并不遵循三角不等式,但是Hellinger距离满足三角不等式。

对于一个多维高斯分布来说pi=N(mi,Pi),

这里mi和Pi分别代表该分布的均值和方差,并且

注意到,在这种情况下Bhattacharyya距离的第一项类似于Mahalanobis距离(马氏距离)。

Bhattacharyya系数

Bhattacharyya系数用来度量两个统计样本的重叠度。该系数可以用来度量两个样本集的可分性。

计算Bhattacharyya系数包含了一个基本的关于两个样本集重合度的积分运算。两个样本集中的定义域被分成了事前定义的几份,这种划分可以体现在下面的定义中:

其中a,b代表样本,n代表划分的数目,∑ai和∑bi分别代表两个样本集中在第i个划分中的样本之和。

对于两个样本集来说,如果相同划分中的样本数越多,样本和越大,则该式的值越大。划分数的选择取决于每一个样本集中的样本数:太少的划分将因为过高估计了重叠区域而减小精度,而太多的划分将会因为在本该有重叠的区域没有恰好重叠而减小精度(最精细的划分将会使每一个相同的区间中都没有重叠)。

如果在每一个划分区间内的乘积都为零,则Bhattacharyya系数也为零。这就意味着如果A和B两个样本集都与样本集C完全可分,则BC(A,C)=B(B,C)=0,即Bhattacharyya系数对于A和B无法区分。

上述内容来自wikipedia

http://en.wikipedia.org/wiki/Bhattacharyya_distance

时间: 2024-10-09 14:18:40

paper 113:Bhattacharyya distance的相关文章

paper 114:Mahalanobis Distance(马氏距离)

(from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.It is based on correlations between variables by which different patterns

paper 112:hellinger distance

在概率论和统计理论中,Hellinger距离被用来度量两个概率分布的相似度.它是f散度的一种(f散度——度量两个概率分布相似度的指标).Hellinger距离被定义成Hellinger积分的形式,这种形式由Ernst Hellinger在1909年引进. 目录 ·1 定义 ·1.1 度量理论 ·1.2 基于Lebesgue度量的概率理论 ·1.3 离散概率分布 ·2 性质 ·3 例子 1 定义 1.1 度量理论 为了从度量理论的角度定义Hellinger距离,我们假设P和Q是两个概率测度,并且它

paper 61:计算机视觉领域的一些牛人博客,超有实力的研究机构等的网站链接

转载出处:blog.csdn.net/carson2005 以下链接是本人整理的关于计算机视觉(ComputerVision, CV)相关领域的网站链接,其中有CV牛人的主页,CV研究小组的主页,CV领域的paper,代码,CV领域的最新动态,国内的应用情况等等.打算从事这个行业或者刚入门的朋友可以多关注这些网站,多了解一些CV的具体应用.搞研究的朋友也可以从中了解到很多牛人的研究动态.招生情况等.总之,我认为,知识只有分享才能产生更大的价值,真诚希望下面的链接能对朋友们有所帮助.(1)goog

paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)

1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985. C. Koch and T. Poggio. Predicting the Visual World: Silenc

paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)

周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门资料: [关于决策树的基础知识参考:http://blog.csdn.net/holybin/article/details/22914417] 在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,所以叫做随机森林.随机森林中的决策树之间是没有关联的,当测试数据进入随机森

paper 22:kl-divergence(KL散度)实现代码

这个函数很重要: function KL = kldiv(varValue,pVect1,pVect2,varargin) %KLDIV Kullback-Leibler or Jensen-Shannon divergence between two distributions.% KLDIV(X,P1,P2) returns the Kullback-Leibler divergence between two% distributions specified over the M vari

paper 154:姿态估计(Hand Pose Estimation)相关总结

Awesome Works  !!!! Table of Contents Conference Papers 2017 ICCV 2017 CVPR 2017 Others 2016 ECCV 2016 CVPR 2016 Others 2015 ICCV 2015 CVPR 2015 Others 2014 CVPR 2014 Others & Before Journal Papers Theses Datasets Challenges Other Related Papers Eval

PAT——甲级1046S:shortest Distance

这道题,折磨了我一个多小时,前前后后写了三个算法. 1046 Shortest Distance (20 point(s)) The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits. Input Specification: Each input

paper 139:qt超强绘图控件qwt - 安装及配置

qwt是一个基于LGPL版权协议的开源项目, 可生成各种统计图.它为具有技术专业背景的程序提供GUI组件和一组实用类,其目标是以基于2D方式的窗体部件来显示数据, 数据源以数值,数组或一组浮点数等方式提供, 输出方式可以是Curves(曲线),Slider(滚动条),Dials(圆盘),Compasses(仪表盘)等等,目前已经应用到许多工业领域,同时qwt也致力于3d的开发.但许多时候,qwt的安装配置难到了许多人,我曾经也在这里原地踏步很久,为了给大家开发方便,把我的安装经验分享给大家,避免