图像融合(六)-- 小波融合

基于小波的融合(wavelet)

  小波变换的固有特性使其在图像处理中有如下优点:完善的重构能力,保证信号在分解过程中没有信息损失和冗余信息;把图像分解成平均图像和细节图像的组合,分别代表了图像的不同结构,因此容易提取原始图像的结构信息和细节信息;小波分析提供了与人类视觉系统方向相吻合的选择性图像。

  离散小波变换(Discrete Wavelet Transform, DWT)。DWT的函数基由一个称为母小波或分析小波的单一函数通过膨胀和平移获得。因而,DWT同时具有时域和频域分析能力,与一般的金字塔分解相比,DWT图像分解具有以下优势:

1)具有方向性,在提取图像低频信息的同时,还可获得了水平、垂直和对角三个方向的高频信息;

2)通过合理的选择母小波,可使DWT在压缩噪声的同时更有效的提取纹理、边缘等显著信息;

3)金字塔分解各尺度之间具有信息的相关性,而DWT在不同尺度上具有更高的独立性。

  DWT 融合算法基本思想与金字塔算法一致,即:首先对源图像进行小波变换,然后按照一定规则对变换系数进行合并;最后对合并后的系数进行小波逆变换得到融合图像。由于不具有移不变性,基于DWT的标准小波融合算法获取的融合图像通常会存在“振铃”干扰;特别在处理连续的图像序列时,融合结果会出现明显的闪烁和抖动现象。

 1、原理阐述

  (1)小波的简单计算原理

  [x0,x1,x2,x3]=[90,70,100,70] 为达到压缩 我们可取 (x0+x1)/2  (x0-x1)/2 来代表 x0,x1  这样 [90,70] 可表示为 [80,10] 80即平均数 10是小范围波动数(可想象出一种波的形状) [90,70] --〉[80,10] , [100,70] --〉 [85,15] 可以想象80 和85 都是局部的平均值反映大的总体的状态,是变化相对缓慢的值,可以认为他们是低频部分的值。 而10、15是小范围波动的值局部变换较快,可以认为他们是高频部分的值。

  1、 FIRST:把[90,70,100,70] 写成 [80,85,10,15] 即把低频部分写在一起(记频率L) 高频部分写在一起(H)

  2、 SECOND:而[80,85] 又可经同样的变换--> [82.5, -2.5] 这样 82.5表示更低频的信息(记频率LL) -2.5则表示了频率L上的波动

  3、最后[90,70,100,70] --〉[82.5, -2.5, 10, 15] 这样信息就可被压缩了(数字范围小了)

  现在再来扩展一下  [90,70]---> [80,10] 写成矩阵 [90,70] * [1/2, 1/2]

               [1/2 ,-1/2]

  矩阵[1,1;1,-1]/2为haar转换矩阵。

  如果是[90,70,100,70]第一步就可以写成矩阵M1:[0.5,0,0.5,0; 0.5,0,-0.5,0; 0,0.5,0,0.5;0,0.5,0,-0.5],第二步只对低频L操作,高频不变可写成M2:

  [1/2,  1/2, 0, 0; 1/2, -1/2, 0, 0; 0,  0,  1, 0 ;0,  0,  0, 1]。另M= M1*M2,可得到4*4的点阵操作。

  第一步运算后原图像缩小至左边一半了,右边的是对应波动信息;

  第二步运算后图像又缩小至左边一半了,对应波动信息。

  对一幅图像先进行行变化,在进行列变化,那么就是小波变化了。

  LL:水平低频,垂直低频

  LH:水平低频,垂直高频

  HL:水平高频,垂直低频

  HH:水平高频,垂直高频

  其中,L表示低频,H表示高频,下标1、2表示一级或二级分解。在每一分解层上,图像均被分解为LL,LH,HH和HL四个频带,下一层的分解仅对低频分量LL进行分解。这四个子图像中的每一个都是由原图与一个小波基函数的内积后,再经过在x和y方向都进行2倍的间隔采样而生成的。这是正变换,也就是图像的分解;逆变换,也就是图像的重建。是通过图像的增频采样和卷积来实现的。这里有个问题进过处理后,数据或超出255或者出现负数,需要将其归一化到0-255之间,方可显示图像。这里介绍的只是简单的小波计算,小波计算的而不同就在于选取不同的小波系数,一般有haar小波,sym2小波等。

资料:http://www.blogbus.com/shijuanfeng-logs/221385402.html

2、融合规则

规则一:系数绝对值较大法

  该融合规则适合高频成分比较丰富,亮度、对比度比较高的源图像,否则在融合图像中只保留一幅源图像的特征,其他的特征被覆盖。小波变换的实际作用是对信号解相关,并将信号的全部信息集中到一部分具有大幅值的小波系数中。这些大的小波系数含有的能量远比小系数含有的能量大,从而在信号的重构中,大的系数比小的系数更重要。

规则二:加权平均法

  权重系数可调,适用范围广,可消除部分噪声,源图像信息损失较少,但会造成图像对比度的下降,需要增强图像灰度。

规则三:局部方差准则

  设A(x,y)和B(x,y)分别为高频子图像数据值,F(x,y)为相应高频子图像融合值,将A(x,y)和B(x,y)分成若干个M×N子块图像。对每个子块图像进行数值分布统计,计算其方差。确定A和B图像每个子块图像加权系数K1和K2。如果A图像子块方差大于B图像子块方差,则K1≥K2,否则K1<K2。确定每个子块图像的数据融合数值为:F(i,j)=K1A(i,j)+K2B(i,j)。

3、融合应用

  若对二维图像进行N层的小波分解,最终将有(3N+1)个高低频带,其中包含3N个高频带和一个低频带。图像融合的基本步骤如下。

  1)对每一源图像分别进行小波分解,建立图像的小波金字塔分解。

  2)对各分解层分别进行融合处理,采用不同的融合算子对各分解层的不同频率分量进行融合处理,最终得到融合后的小波金字塔。低频:加权平均,高频:绝对值取大。

  3)对融合后所得的小波金字塔进行小波逆变换,所得到的重构图像即为融合后的图像。

  图像的低频部表现的是图像的概貌和平均特性;图像的高频反应的是图像的细节特性,如图像的边缘、区域边界等。

  融合规则

  基于局部方差的融合规则:在邻域W中,图像I在以(i ,j)为中心点的局部方差定义:

  式中为图像I 的均值,M,N 分别为局部区域的行数和列数,这里取局部区域为3*3,基于局部方差的融合方式常用的方法是选择法,即通常说的局部方差取大法。方差选择法的融合规则:

  L为分解尺度, 表示图像小波系数, 表示图像小波系数, =d=H,V,D分别表示的是水平、垂直、对角高频分量。如果两幅图片直接使用局部方差法进行融合,局部方差相差较大时,采用局部方差取大法能够比较完整的存储图像的微小细节。一旦局部方差相差很小时,局部方差取大法会使图像细节失真。

  图像融合有一个重要的目的,即将图像的边缘、细节等都包含到融合图像中。一种方法是将图像的边缘提取出来,将它应用到相应的融合算法中。图像边缘检测的最好的算子是 canny 算子,将canny算子和局部方差的融合规则的算法相结合,提出了一种新的改进融合方法。融合步骤如下:

  (1)小波分解。对于图像 A,B 分别进行 3 层小波分解,得到低频分量AA、AB和高频分量DLH,DLV,DLD。

  (2)低频融合。对低频分量AA 和AB 所有的像素点计算其局部方差Var(i ,j)AA和 Var(i ,j)BA,然后进行归一化:

  然后,利用归一化的局部方差,按照如下:

  (3)高频融合。在图像 A 和 B 的每一个高频分DLA,DLB中,对每一个高频分量用 canny 算子进行边缘提取,再对边缘图像的每一个元素计算局部方差:

  其中,表示源图像的第l层经 canny 算子处理的高频系数,为源图像的第l层经 canny 算子提取后的均值,是对源图

像的第l层高频分量进行边缘提取后求得的局部方差。

  (4)小波重构。对融合后的系数进行小波重构,得到融合后的图像。

  附:这里介绍的小波是最简单的形式,融合规则也比较常用,很多红外和可见的融合也都用到了这里的规则,所以,实现这里面的算法来适用我们的应用。

?

时间: 2024-10-07 13:06:46

图像融合(六)-- 小波融合的相关文章

第一代程序猿王小波

Managershare:据我所知,最文艺的群体并不是文科生,而是理科生. 多数人知道王小波是小说家,部分人分不清财经作家吴晓波和小说家王小波是不是一回事儿.却很少有人知道王小波可以算的上中国早期的程序员,在 90 年代初的时候因为国内应用软件缺乏,爱捣鼓东西的王小波利用闲暇时间学习了汇编和C语言,编了中文编辑器和输入法.中文编辑器和输入法任何一个都是大牛级的 GEEK 才会去尝试的东西,比如求伯君.王小波通过卖软件还挣了些钱,当时很多中观村的老板要拉他入伙,当然写代码这种来钱快的活对屌丝王小波

白银时代-王小波

白银时代-王小波"生活"是天籁,必须凝神静听.对不相信的事情说不在意,这就是我保全体面的方法.在剧痛中死在沙漠里,也比迷失在白银世界里要好得多.文明社会一环扣一环,和谐地运转着,错一环则动全身.你知道什么是天才的秘诀吗?那就是永远只做一件事.假如要做的事情很多,那就排出次序,依次来干.每个人的一生都拥有一些资源,比方说:寿命,智力,健康,身体,性生活.有些人准备把它消费掉,换取新奇,快乐等等.女人上街总是想猎人扛枪进山一样,但是猎取的目标有所不同.他说,我这一生都在等待,等待研究数学,

多尺度二维离散小波重构waverec2

clc,clear all,close all; load woman; [c,s]=wavedec2(X,2,'haar');%进行2尺度二维离散小波分解.分解小波函数haar %多尺度二维离散小波重构(逆变换) Y=waverec2(c,s,'haar'); figure; subplot(1,2,1),imshow(X,map),title('原始图像'); subplot(1,2,2),imshow(Y,map),title('重构图像');

单尺度二维离散小波重构(逆变换)idwt2

clc,clear all,close all; load woman; %单尺度二维离散小波分解.分解小波函数haar [cA,cH,cV,cD]=dwt2(X,'haar'); %单尺度二维离散小波重构(逆变换) Y=idwt2(cA,cH,cV,cD,'haar'); figure; subplot(1,2,1),imshow(X,map),title('原始图像'); subplot(1,2,2),imshow(Y,map),title('重构图像');

ECG信号读取,检测QRS,P,T 波(基于小波去噪与检测),基于BP神经网络的身份识别

这学期选了神经网络的课程,最后作业是处理ECG信号,并利用神经网络进行识别. 1  ECG介绍与读取ECG信号 1)ECG介绍  具体ECG背景应用就不介绍了,大家可以参考百度 谷歌.只是简单说下ECG的结构: 一个完整周期的ECG信号有 QRS P T 波组成,不同的人对应不用的波形,同一个人在不同的阶段波形也不同.我们需要根据各个波形的特点,提取出相应的特征,对不同的人进行身份识别. 2)ECG信号读取 首先需要到MIT-BIH数据库中下载ECG信号,具体的下载地址与程序读取内容介绍可以参考

完全搞懂傅里叶变换和小波(6)——傅立叶级数展开之函数项级数的性质

完全搞懂傅里叶变换和小波(6)——傅立叶级数展开之函数项级数的性质 上一小节中我们介绍了函数项级数的概念,这一节我们来讨论函数项级数的性质.傅立叶 级数是一种函数项(三角函数)级数,本质上来说,一幅图像(或者一组信号)就是一个函数,我们研究图像的傅立叶变换,就是要探讨如何将图像函数用三角函数 进行展开.所以如果要彻底搞清楚傅里叶变换,那么讨论函数项级数的性质是非常有必要的.在此基础上,我们将引入傅立叶级数的概念. 如果你对本文涉及的基础问题不甚了解,那么建议你阅读本文前面的部分.希望读者能日积月

单尺度二维离散小波分解dwt2

clc,clear all,close all; load woman; [cA,cH,cV,cD]=dwt2(X,'haar');%单尺度二维离散小波分解.分解小波函数haar figure,imshow(X,map),axis image; figure; subplot(2,2,1),imshow(uint8(cA));axis off;title('低频系数图像'); subplot(2,2,2),imshow(uint8(cH));axis off;title('水平高频系数图像');

多尺度二维离散小波分解wavedec2

clc,clear all,close all; load woman; [c,s]=wavedec2(X,2,'db1');%进行2尺度二维离散小波分解.分解小波函数-db1 [cH1,cV1,cD1]=detcoef2('all',c,s,1);%尺度1的所有方向的高频系数 [cH2,cV2,cD2]=detcoef2('all',c,s,2);%尺度2的所有方向的高频系数 cA1=appcoef2(c,s,'db1',1);%尺度1的低频系数 cA2=appcoef2(c,s,'db1',

Matlab小波工具箱的使用2

http://blog.sina.com.cn/s/blog_6163bdeb0102dw7a.html 一维离散小波分析 工具箱提供了如下函数做一维信号分析:   Function Name Purpose 分解函数 dwt 一层分解 wavedec 分解 wmaxlev 最大小波分解层数 重构函数 idwt 一层重构 waverec 全重构 wrcoef 有选择性重构 upcoef 单一重构 分解结构工具 detcoef 细节系数抽取 appcoef 近似系数抽取 upwlev 分解结构重排