caffe怎么把全连接层转成convolutional层

caffe中有把fc层转化为conv层的,其实怎么看参数都是不变的,对alex模型来说,第一个fc层的参数是4096X9216,而conv的维度是4096x256x6x6,因此参数个数是不变的,只是需要把fc的参数存储方法改变成conv 的。

在caffe的官方网站:http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb

有说明怎么转换。首先将原模型加载进来fc_param,然后把全conv的配置文件和模型加载conv_param,然后将fc_param进行flat并赋值给conv_param,当然在flat时会按照conv_param的格式进行赋值。然后我们就完成了全conv的模型生成,此时再把模型保存下来,就完成了模型转换为全conv的模型的过程。

然后在我们使用full conv模型时,只要加载就可以了。

时间: 2024-09-30 07:37:57

caffe怎么把全连接层转成convolutional层的相关文章

resnet18全连接层改成卷积层

想要尝试一下将resnet18最后一层的全连接层改成卷积层看会不会对网络效果和网络大小有什么影响 1.首先先对train.py中的更改是: train.py代码可见:pytorch实现性别检测 # model_conv.fc = nn.Linear(fc_features, 2)这是之前的写法 model_conv.fc = nn.Conv2d(fc_features, 2, 1) print(model_conv.fc) 但是运行的时候出错: 1) RuntimeError: Expected

理解为什么要将全连接层转化为卷积层

理解为什么要将全连接层转化为卷积层 1.全连接层可以视作一种特殊的卷积 考虑下面两种情况: 特征图和全连接层相连,AlexNet经过五次池化后得到7*7*512的特征图,下一层全连接连向4096个神经元,这个过程可以看做有4096个7*7*512的卷积核和7*7*512的特征图进行卷积操作,最终得到1*1*4096的特征图,等价与全连接得到4096个神经元. 全连接层和全连接层相连,AlexNet的再下一层依然是4096个神经元,即4096个神经元和4096个神经元全连接,由(1)我们得到了1*

前馈全连接神经网络和函数逼近、时间序列预测、手写数字识别

https://www.cnblogs.com/conmajia/p/annt-feed-forward-fully-connected-neural-networks.html Andrew Kirillov 著Conmajia 译2019 年 1 月 12 日 原文发表于 CodeProject(2018 年 9 月 28 日). 中文版有小幅修改,已获作者本人授权. 本文介绍了如何使用 ANNT 神经网络库生成前馈全连接神经网络并应用到问题求解. 全文约 12,000 字,建议阅读时间 3

全连接理解2

(名称:全连接.意思就是输出层的神经元和输入层的每个神经元都连接) 在卷积神经网络的最后,往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图转化成一维的一个向量,这是怎么来的呢?目的何在呢? 举个例子: 最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,进行了最后一次池化,输出了20个12*12的图像,然后通过了一个全连接层变成了1*100的向量. 这是怎么做到的呢,其实就是有20*100个12*12的卷积核卷积出来的,对于输入的每一张图,用了一个和图像一样大小的核卷积,这样整幅

【转】Caffe源码阅读(1) 全连接层

原作者:在路上 原文链接:http://zhangliliang.com/2014/09/15/about-caffe-code-full-connected-layer/ 今天看全连接层的实现.主要看的是https://github.com/BVLC/caffe/blob/master/src/caffe/layers/inner_product_layer.cpp 主要是三个方法,setup,forward,backward setup 初始化网络参数,包括了w和b forward 前向传播

全连接层分类的原理

全连接层就是把前面经过卷积.激励.池化后的图像元素一个接一个串联在一起,作为判决的投票值,最终得出判决结果.下面的一组图是大神的可视化讲解: 组成卷积神经网络,通过特征提取和学习得到标签的置信值,最终得出分类结果. 原文地址:https://www.cnblogs.com/inception6-lxc/p/9939691.html

Pytorch修改ResNet模型全连接层进行直接训练

之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把 最后一层的输出改一下,不需要加载前面层的权重,方法如下: model = torchvision.models.resnet18(pretrained=False) num_fc_ftr = model.fc.in_features model.fc = torch.nn.Linear(num_fc_ftr, 224) model =

神经网络之全连接层(线性层)

对于神经网络的全连接层,前面已经使用矩阵的运算方式实现过,本篇将引入tensorflow中层的概念, 正式使用deep learning相关的API搭建一个全连接神经网络.下面是全连接神经网络的结构图 其中,x1,x2,x3为输入,a1,a2,a3为输出,运算关系如下: x1,x2,x3所在的层叫神经网络的输入层,a1,a2,a3所在的层叫神经网络的输出层,如果两层中间还有若干层,那么中间的这些层叫做隐藏层. 那么,如何使用tensorflow去创建这样的层呢?其实非常简单,只需要调用tf.ke

Fully Connected Layer:全连接层

1. 全连接层:主要用于分类,把分布式特征映射到样本标记空间.全连接层的每一个结点都与上一层的所有结点相连,用来把前边提取到的特征综合起来.全连接层中的权值矩阵Wi的每一行相当于一个分类模版,xi与Wi矩阵乘法,即可得到xi与每一个模板的匹配度,从中选取得分最高的匹配模板. 在 CNN 结构中,经多个卷积层和池化层后,连接着1个或1个以上的全连接层.全连接层中的每个神经元与其前一层的所有神经元进行全连接,全连接层可以整合卷积层或者池化层中具有类别区分性的局部信息.为了提升 CNN 网络性能,全连