从源码理解LinkedList.java

package java.util;
import java.util.function.Consumer;

/**
 * List和Deque接口的双向链表实现,实现了所有可选接口,允许空值null
 * 支持所有双向链表应该支持的操作,深入链表的操作都是从链表头遍历到链表尾
 * 该实现不支持并发。多线程访问,至少一个线程修改列表结构时,需要外部同步,如:
 *  List list = Collections.synchronizedList(new LinkedList(...));
 * iterator和listIterator返回的迭代器都是快速失败(fail-fast)的,并发情况下修改后果未定义
 * 此功能(fail-fast)只用于调试bug
 */
    /**
     * LinkedList和ArrayList一样都实现了List的接口,但是它执行插入和删除操作时比ArrayList更加高效,因为它是基于链表的。
     * 基于链表也决定了它在随机访问方面要比ArrayList逊色一点
     * LinkedList还提供了一些可以使其作为栈、队列、双端队列的方法。
     * 这些方法中有些彼此之间只是名称的区别,以使得这些名字在特定的上下文中显得更加的合适
     * LinkedList继承自AbstractSequenceList、实现了List及Deque接口。
     * 其实,AbstractSequenceList已经实现了List接口,这里标注出List只是更加清晰而已。
     * AbstractSequenceList提供了List接口骨干性的实现以减少实现List接口的复杂度。
     * Deque接口定义了双端队列的操作
     */
public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
        //LinkedList对象里存储的元素个数
    transient int size = 0;
    /**
     * 指向第一个结点的指针
     * Invariant: (first == null && last == null) ||
     *            (first.prev == null && first.item != null)
     */
    transient Node<E> first;
    /**
     * 指向最后一个结点的指针
     * Invariant: (first == null && last == null) ||
     *            (last.next == null && last.item != null)
     */
    transient Node<E> last;

    /**
     * 构造函数1:构造一个空链表
     * first=null,last=null,即代表列表为空
     */
    public LinkedList() {
    }

    /**
     * 构造函数2:构造一个列表,包含指定集合中的元素,顺序按照集合的迭代器返回的顺序
     * @param  c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

    /**
     * 从头部插入元素e,结点e成为新的头结点
     */
    private void linkFirst(E e) {
        final Node<E> f = first;
            //newNode前驱结点为null,后继结点为f=first,结点值为e
        final Node<E> newNode = new Node<>(null, e, f);
        first = newNode;
            //newNode为第一个结点
        if (f == null)
            last = newNode;
            //建立原头结点与新头结点的链接
        else
            f.prev = newNode;
        size++;
        modCount++;
    }

    /**
     * 从尾部插入元素e,结点e成为新的尾结点
     */
    void linkLast(E e) {
        final Node<E> l = last;
            //新建一个前驱为l=last,后继结点为null,结点值为e的newNode
        final Node<E> newNode = new Node<>(l, e, null);
            //新的尾结点
        last = newNode;
            //如果newNode是唯一的一个结点
        if (l == null)
            first = newNode;
            //建立原尾结点与新尾结点的链接
        else
            l.next = newNode;
        size++;
        modCount++;
    }

    /**
     * 在一个非空后继结点succ前插入元素e
     */
    void linkBefore(E e, Node<E> succ) {
        // 假设succ!=null
        final Node<E> pred = succ.prev;
            //新建一个前驱为pred,后继为succ,结点值为e
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
            //前驱为空
        if (pred == null)
            first = newNode;
            //前驱非空
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

    /**
     * 删除非空首结点
     */
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
            //首结点的后继作为新的首结点
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
            //size自减
        size--;
            //修改modCount
        modCount++;
        return element;
    }

    /**
     * 删除非空尾结点
     */
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
            //解除引用
        l.item = null;
        l.prev = null; // help GC
            //尾结点的前驱作为新的尾结点
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * 删除非空结点x
     */
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
            //记录删除结点的前驱和后继
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;
            //前驱为空,x是首节点
        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }
            //后继为空,x是尾结点
        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }
            //解除x的引用
        x.item = null;
        size--;
            //修改modCount
        modCount++;
        return element;
    }

    /**
     * 返回列表中的第一个元素
     * @return the first element in this list
     * @throws NoSuchElementException if this list is empty
     */
    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }

    /**
     * 返回列表中最后一个元素
     * @return the last element in this list
     * @throws NoSuchElementException if this list is empty
     */
    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }

    /**
     * 删除并返回列表的第一个元素,使用unlinkFirst(f)
     * @return the first element from this list
     * @throws NoSuchElementException if this list is empty
     */
    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

    /**
     * 删除并返回列表的最后一个元素,使用unlinkLast(l)
     * @return the last element from this list
     * @throws NoSuchElementException if this list is empty
     */
    public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }

    /**
     * 在列表开头处插入指定元素,使用linkFirst
     * @param e the element to add
     */
    public void addFirst(E e) {
        linkFirst(e);
    }

    /**
     * 在列表结尾插入指定元素,使用linkLast,与add等效
     * @param e the element to add
     */
    public void addLast(E e) {
        linkLast(e);
    }

    /**
     * Returns {@code true} if this list contains the specified element.
     * More formally, returns {@code true} if and only if this list contains
     * at least one element {@code e} such that
     * <tt>(o==null ? e==null : o.equals(e))</tt>.
     *
     * @param o element whose presence in this list is to be tested
     * @return {@code true} if this list contains the specified element
     */
    public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

    /**
     * 返回列表中元素数目
     * @return the number of elements in this list
     */
    public int size() {
        return size;
    }

    /**
     * 在列表尾结点后添加元素,使用linklast
     * <p>This method is equivalent to {@link #addLast}.
     *
     * @param e element to be appended to this list
     * @return {@code true} (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        linkLast(e);
        return true;
    }

    /**
     * 删除首个与指定对象相等的元素,使用unlink删除
     * @param o element to be removed from this list, if present
     * @return {@code true} if this list contained the specified element
     */
    public boolean remove(Object o) {
        if (o == null) {
                //顺序遍历,找到指定元素
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
                //顺序遍历
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * 将指定集合中所有元素添加到列表中,并发修改未定义
     * @param c collection containing elements to be added to this list
     * @return {@code true} if this list changed as a result of the call
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
            //调用addAll(index, c)
        return addAll(size, c);
    }

    /**
     * 在指定index之后插入集合c中的所有元素,当前位置及其所有后继元素向后移动
     * @param index index at which to insert the first element
     *              from the specified collection
     * @param c collection containing elements to be added to this list
     * @return {@code true} if this list changed as a result of the call
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(int index, Collection<? extends E> c) {
            //范围检查
        checkPositionIndex(index);

        Object[] a = c.toArray();
        int numNew = a.length;
            //若需要插入的结点个数为0则返回false,表示没有插入元素
        if (numNew == 0)
            return false;
            //succ保存index处的结点,插入位置如果是size,则在尾结点后面插入,否则获取index处的结点
            //pred保存index处的前驱结点,插入时需要修改这个结点的next引用
        Node<E> pred, succ;
        if (index == size) {
            succ = null;
            pred = last;
        } else {
            succ = node(index);
            pred = succ.prev;
        }
            //按顺序将a数组中的第一个元素插入到index处,将之后的元素插在这个元素后面
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
                //新建一个前驱为pred,后继为null,结点值为e的结点newNode
            Node<E> newNode = new Node<>(pred, e, null);
                //考虑首节点
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }
            //succ为null,则当前pred为最后一个元素
        if (succ == null) {
            last = pred;
        } else {
                //将succ及其之后的所有元素链到pred上
            pred.next = succ;
            succ.prev = pred;
        }
            //修改size,modCount
        size += numNew;
        modCount++;
        return true;
    }

    /**
     * 移除列表中所有元素
     */
    public void clear() {
        // 清除所有节点之间的链接可能没什么必要,但是:
        // -如果丢弃的结点处于初代以上且没有可达迭代器,
        // -这就帮助分代GC回收自由空间
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
                //解除两两结点之间引用关系
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
            //first=null和last=null表示列表为空
        first = last = null;
        size = 0;
        modCount++;
    }
    // 位置访问操作Positional Access Operations
    /**
     * 返回列表中指定位置的元素
     * @param index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
            //下标范围检查
        checkElementIndex(index);
            //返回index下标处的元素
        return node(index).item;
    }

    /**
     * 替换指定下标的元素为指定元素
     * @param index index of the element to replace
     * @param element element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E set(int index, E element) {
            //范围检查
        checkElementIndex(index);
            //获取元素结点
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

    /**
     * 在指定下标index处插入元素element,当前节点及其后继向后移动
     * @param index index at which the specified element is to be inserted
     * @param element element to be inserted
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public void add(int index, E element) {
            //范围检查
        checkPositionIndex(index);
            //在链表末尾处添加
        if (index == size)
            linkLast(element);
            //在链表中添加
        else
            linkBefore(element, node(index));
    }

    /**
     * 删除指定下标处的元素,其后继结点向前移动一位,返回删除的元素
     * @param index the index of the element to be removed
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E remove(int index) {
            //范围检查
        checkElementIndex(index);
            //删除结点
        return unlink(node(index));
    }

    /**
     * 检查下标index是否当前存在的元素
     */
    private boolean isElementIndex(int index) {
        return index >= 0 && index < size;
    }

    /**
     * 为迭代器iterator或添加操作add验证index参数是否合法
     */
    private boolean isPositionIndex(int index) {
            //判断index是否超过了链表长度或小于0
        return index >= 0 && index <= size;
    }

    /**
     * 构造一个异常IndexOutOfBoundsException的详细信息对象
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    private void checkElementIndex(int index) {
        if (!isElementIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
        //对index范围检查
    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * 返回指定下标index处的非空结点
     */
    Node<E> node(int index) {
        // 假设 isElementIndex(index)返回true;
            //没超过一半,从first结点开始向后遍历寻找结点
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
                //超过一半,从last结点开始向前遍历寻找结点
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }
    // 搜索操作
    /**
     * 返回列表中指定对象首次出现的下标,不存在则返回-1
     * @param o element to search for
     * @return the index of the first occurrence of the specified element in
     *         this list, or -1 if this list does not contain the element
     */
    public int indexOf(Object o) {
        int index = 0;
            //查询对象为空
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
                //集合中不支持基本类型,都是类类型,所以都用equals比较
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }

    /**
     * 返回列表中指定对象最后一次出现的下标,不存在则返回-1
     * @param o element to search for
     * @return the index of the last occurrence of the specified element in
     *         this list, or -1 if this list does not contain the element
     */
    public int lastIndexOf(Object o) {
            //从后向前遍历,找到的第一个元素即为所求
        int index = size;
        if (o == null) {
                //搜索对象为空null
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
                //搜索对象非空
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }
    // 队列操作
    /**
     * 取但不移除列表头结点
     * @return the head of this list, or {@code null} if this list is empty
     */
    public E peek() {
            //返回头结点
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }

    /**
     * 取但不移除列表头结点
     * @return the head of this list
     * @throws NoSuchElementException if this list is empty
     */
    public E element() {
            //返回头结点
        return getFirst();
    }

    /**
     * 取并移除列表头结点
     * @return the head of this list, or {@code null} if this list is empty
     */
    public E poll() {
        final Node<E> f = first;
            //返回并移除头结点
        return (f == null) ? null : unlinkFirst(f);
    }

    /**
     * 返回并移除头结点
     * @return the head of this list
     * @throws NoSuchElementException if this list is empty
     */
    public E remove() {
            //返回并移除头结点
        return removeFirst();
    }

    /**
     * 添加指定元素作为列表尾结点
     * @param e the element to add
     * @return {@code true} (as specified by {@link Queue#offer})
     */
    public boolean offer(E e) {
        return add(e);
    }

    // 双端队列操作(栈操作)
    /**
     * 插入指定元素到首节点之前
     * @param e the element to insert
     * @return {@code true} (as specified by {@link Deque#offerFirst})
     */
    public boolean offerFirst(E e) {
            //首节点之前插入元素
        addFirst(e);
        return true;
    }

    /**
     * 在列表尾结点插入指定元素
     * @param e the element to insert
     * @return {@code true} (as specified by {@link Deque#offerLast})
     */
    public boolean offerLast(E e) {
            //在尾结点之后插入元素
        addLast(e);
        return true;
    }

    /**
     * 取但不移除首节点,如果列表为空,返回null
     * @return the first element of this list, or {@code null}
     *         if this list is empty
     */
    public E peekFirst() {
        final Node<E> f = first;
            //返回首节点
        return (f == null) ? null : f.item;
     }

    /**
     * 取但不删除列表尾结点,列表为空返回null
     * @return the last element of this list, or {@code null}
     *         if this list is empty
     */
    public E peekLast() {
        final Node<E> l = last;
            //返回尾结点
        return (l == null) ? null : l.item;
    }

    /**
     * 返回并移除列表首节点,列表为空返回null
     * @return the first element of this list, or {@code null} if
     *     this list is empty
     */
    public E pollFirst() {
        final Node<E> f = first;
            //返回并删除首结点
        return (f == null) ? null : unlinkFirst(f);
    }

    /**
     * 返回并删除列表尾结点,列表为空返回null
     * @return the last element of this list, or {@code null} if
     *     this list is empty
     */
    public E pollLast() {
        final Node<E> l = last;
            //返回并移除尾结点
        return (l == null) ? null : unlinkLast(l);
    }

    /**
     * 向列表表示的栈中压入元素,等价于addFirst
     * @param e the element to push
     */
    public void push(E e) {
        addFirst(e);
    }

    /**
     * 从栈中移除并返回一个元素,即删除并返回列表首元素,等价于removeFirst()
     * @return the element at the front of this list (which is the top
     *         of the stack represented by this list)
     * @throws NoSuchElementException if this list is empty
     */
    public E pop() {
        return removeFirst();
    }

    /**
     * 删除第一次出现的指定元素,如果不包含该元素,没有变化
     * @param o element to be removed from this list, if present
     * @return {@code true} if the list contained the specified element
     */
    public boolean removeFirstOccurrence(Object o) {
            //删除指定元素
        return remove(o);
    }

    /**
     * 删除最后一次出现的指定元素,若没有,不做改变
     * @param o element to be removed from this list, if present
     * @return {@code true} if the list contained the specified element
     */
    public boolean removeLastOccurrence(Object o) {
            //搜索空对象
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
                //搜索非空对象
            for (Node<E> x = last; x != null; x = x.prev) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
            //没有则返回false
        return false;
    }

    /**
     * 返回列表的一个从指定位置开始的list迭代器,遵循listIterator(int)的通用规范
     * The list-iterator is <i>fail-fast</i>: if the list is structurally
     * modified at any time after the Iterator is created, in any way except
     * through the list-iterator's own {@code remove} or {@code add}
     * methods, the list-iterator will throw a
     * {@code ConcurrentModificationException}.  Thus, in the face of
     * concurrent modification, the iterator fails quickly and cleanly, rather
     * than risking arbitrary, non-deterministic behavior at an undetermined
     * time in the future.
     *
     * @param index index of the first element to be returned from the
     *              list-iterator (by a call to {@code next})
     * @return a ListIterator of the elements in this list (in proper
     *         sequence), starting at the specified position in the list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @see List#listIterator(int)
     */
    public ListIterator<E> listIterator(int index) {
            //范围检查
        checkPositionIndex(index);
        return new ListItr(index);
    }

    private class ListItr implements ListIterator<E> {
        private Node<E> lastReturned = null;
        private Node<E> next;
        private int nextIndex;
        private int expectedModCount = modCount;

        ListItr(int index) {
            // 假设isPositionIndex(index)返回true;
            next = (index == size) ? null : node(index);
            nextIndex = index;
        }

        public boolean hasNext() {
            return nextIndex < size;
        }

        public E next() {
                //检查有无同步修改
            checkForComodification();
            if (!hasNext())
                throw new NoSuchElementException();

            lastReturned = next;
            next = next.next;
            nextIndex++;
            return lastReturned.item;
        }

        public boolean hasPrevious() {
            return nextIndex > 0;
        }

        public E previous() {
            //检查有无同步修改
            checkForComodification();
            if (!hasPrevious())
                throw new NoSuchElementException();

            lastReturned = next = (next == null) ? last : next.prev;
            nextIndex--;
            return lastReturned.item;
        }

        public int nextIndex() {
            return nextIndex;
        }

        public int previousIndex() {
            return nextIndex - 1;
        }

        public void remove() {
            checkForComodification();
            if (lastReturned == null)
                throw new IllegalStateException();

            Node<E> lastNext = lastReturned.next;
            unlink(lastReturned);
            if (next == lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = null;
            expectedModCount++;
        }

        public void set(E e) {
            if (lastReturned == null)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.item = e;
        }

        public void add(E e) {
            checkForComodification();
            lastReturned = null;
            if (next == null)
                linkLast(e);
            else
                linkBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            while (modCount == expectedModCount && nextIndex < size) {
                action.accept(next.item);
                lastReturned = next;
                next = next.next;
                nextIndex++;
            }
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }
        //链表内部结点Node<E>
    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

    public Iterator<E> descendingIterator() {
        return new DescendingIterator();
    }

    /**
     * Adapter to provide descending iterators via ListItr.previous
     */
    private class DescendingIterator implements Iterator<E> {
        private final ListItr itr = new ListItr(size());
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        public E next() {
            return itr.previous();
        }
        public void remove() {
            itr.remove();
        }
    }

    @SuppressWarnings("unchecked")
    private LinkedList<E> superClone() {
        try {
            return (LinkedList<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }

    /**
     * Returns a shallow copy of this {@code LinkedList}. (The elements
     * themselves are not cloned.)
     *
     * @return a shallow copy of this {@code LinkedList} instance
     */
    public Object clone() {
        LinkedList<E> clone = superClone();

        // Put clone into "virgin" state
        clone.first = clone.last = null;
        clone.size = 0;
        clone.modCount = 0;

        // Initialize clone with our elements
        for (Node<E> x = first; x != null; x = x.next)
            clone.add(x.item);

        return clone;
    }

    /**
     * 返回一个包含列表所有元素的数组(按照从头到尾的顺序),返回的数组是安全的,因为链表内部不存在对它的引用
     * 它是分配了一个新数组,所以调用者可以任意修改返回的数组,不会对链表造成影响
     * @return an array containing all of the elements in this list
     *         in proper sequence
     */
    public Object[] toArray() {
        Object[] result = new Object[size];
        int i = 0;
            //从头到尾遍历链表
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;
        return result;
    }

    /**
     * Returns an array containing all of the elements in this list in
     * proper sequence (from first to last element); the runtime type of
     * the returned array is that of the specified array.  If the list fits
     * in the specified array, it is returned therein.  Otherwise, a new
     * array is allocated with the runtime type of the specified array and
     * the size of this list.
     *
     * <p>If the list fits in the specified array with room to spare (i.e.,
     * the array has more elements than the list), the element in the array
     * immediately following the end of the list is set to {@code null}.
     * (This is useful in determining the length of the list <i>only</i> if
     * the caller knows that the list does not contain any null elements.)
     *
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
     * array-based and collection-based APIs.  Further, this method allows
     * precise control over the runtime type of the output array, and may,
     * under certain circumstances, be used to save allocation costs.
     *
     * <p>Suppose {@code x} is a list known to contain only strings.
     * The following code can be used to dump the list into a newly
     * allocated array of {@code String}:
     *
     * <pre>
     *     String[] y = x.toArray(new String[0]);</pre>
     *
     * Note that {@code toArray(new Object[0])} is identical in function to
     * {@code toArray()}.
     *
     * @param a the array into which the elements of the list are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose.
     * @return an array containing the elements of the list
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this list
     * @throws NullPointerException if the specified array is null
     */
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
            //如果a数组的长度不够,重新申请足够的数组,使用Java反射
        if (a.length < size)
            a = (T[])java.lang.reflect.Array.newInstance(
                                a.getClass().getComponentType(), size);
        int i = 0;
        Object[] result = a;
            //从头到尾遍历链表
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;

        if (a.length > size)
            a[size] = null;
        return a;
    }

    private static final long serialVersionUID = 876323262645176354L;

    /**
     * Saves the state of this {@code LinkedList} instance to a stream
     * (that is, serializes it).
     *
     * @serialData The size of the list (the number of elements it
     *             contains) is emitted (int), followed by all of its
     *             elements (each an Object) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // Write out size
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (Node<E> x = first; x != null; x = x.next)
            s.writeObject(x.item);
    }

    /**
     * Reconstitutes this {@code LinkedList} instance from a stream
     * (that is, deserializes it).
     */
    @SuppressWarnings("unchecked")
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // Read in size
        int size = s.readInt();

        // Read in all elements in the proper order.
        for (int i = 0; i < size; i++)
            linkLast((E)s.readObject());
    }

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
     * list.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
     * {@link Spliterator#ORDERED}.  Overriding implementations should document
     * the reporting of additional characteristic values.
     *
     * @implNote
     * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}
     * and implements {@code trySplit} to permit limited parallelism..
     *
     * @return a {@code Spliterator} over the elements in this list
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new LLSpliterator<E>(this, -1, 0);
    }

    /** A customized variant of Spliterators.IteratorSpliterator */
    static final class LLSpliterator<E> implements Spliterator<E> {
        static final int BATCH_UNIT = 1 << 10;  // batch array size increment
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final LinkedList<E> list; // null OK unless traversed
        Node<E> current;      // current node; null until initialized
        int est;              // size estimate; -1 until first needed
        int expectedModCount; // initialized when est set
        int batch;            // batch size for splits

        LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
            this.list = list;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getEst() {
            int s; // force initialization
            final LinkedList<E> lst;
            if ((s = est) < 0) {
                if ((lst = list) == null)
                    s = est = 0;
                else {
                    expectedModCount = lst.modCount;
                    current = lst.first;
                    s = est = lst.size;
                }
            }
            return s;
        }

        public long estimateSize() { return (long) getEst(); }

        public Spliterator<E> trySplit() {
            Node<E> p;
            int s = getEst();
            if (s > 1 && (p = current) != null) {
                int n = batch + BATCH_UNIT;
                if (n > s)
                    n = s;
                if (n > MAX_BATCH)
                    n = MAX_BATCH;
                Object[] a = new Object[n];
                int j = 0;
                do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
                current = p;
                batch = j;
                est = s - j;
                return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
            }
            return null;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Node<E> p; int n;
            if (action == null) throw new NullPointerException();
            if ((n = getEst()) > 0 && (p = current) != null) {
                current = null;
                est = 0;
                do {
                    E e = p.item;
                    p = p.next;
                    action.accept(e);
                } while (p != null && --n > 0);
            }
            if (list.modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            Node<E> p;
            if (action == null) throw new NullPointerException();
            if (getEst() > 0 && (p = current) != null) {
                --est;
                E e = p.item;
                current = p.next;
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

}

时间: 2024-10-30 02:39:32

从源码理解LinkedList.java的相关文章

从源码理解ArrayList.java

package java.util; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; /** * 可变数组实现了List接口,实现了所有列表操作,允许空值null.还提供了操作数组大小的方法用以内部使用. * 除了不支持并发访问,这个类完全等同于Vector * 以下几个操作都是常数时间:size.isEmpty.ge

从源码理解Stack.java

package java.util; /** * Stack类表示了后进先出(LIFO)的一个容器对象.Stack继承自Vector并扩展了五个操作,使得Vector可以被看作是一个Stack. * 常用的push和pop,以及获取栈顶元素的peek,测试栈是否为空的empty,一个搜索操作search并返回其与栈顶的距离 * 第一次创建的时候,栈中没有元素 * 更丰富更兼容的LIFO操作由Deque接口提供,Deque使用起来比Stack更好,比如: * Deque<Integer> sta

从源码理解LinkedHashMap.java

package java.util; import java.util.function.Consumer; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.io.IOException; import HashMap.Node; /** * 哈希表和链表实现Map接口,并具有固定迭代顺序. * LinkedHashMap实现和HashMap的不同之处在于LinkedH

Java源码之LinkedList

Java源码之LinkedList 转载请注意出处:http://blog.csdn.net/itismelzp/article/details/51620311 一.LinkedList概述 本文采用jdk1.8进行分析. LinkedList实现了List,Deque接口的双向链表,实现了链表的所有可选操作,并且可有null值.查找某个值的时候必须从头到尾的遍历链表.它是非线程安全的,当多个线程结构化修改同一链表时需要加上同步处理.(程结构化修改包括:添加.删除,不包括:修改值)可使用Col

JDK源码学习LinkedList

LinkedList是List接口的子类,它底层数据结构是双向循环链表.LinkedList还实现了Deque接口(double-end-queue双端队列,线性collection,支持在两端插入和移除元素).所以LinkedList既可以被当作双向链表,还可以当做栈.队列或双端队列进行操作.文章目录如下: 1.LinkedList的存储实现(jdk 1.7.0_51) 2.LinkedList的读取实现 3.LinkedList的性能分析 下面我们进入正题,开始学习LinkedList. L

【源码】LinkedList源码剖析

//----------------------------------------------------------- 转载请注明出处:http://blog.csdn.net/chdjj by Rowandjj 2014/8/8 //---------------------------------------------------------- 注:以下源码基于jdk1.7.0_11 上一篇我们分析了ArrayList,今天我们再来看下LinkedList. 首先上一幅框架图: Lin

Android源码开发利器——Java源码调试(基于4.1.2)

原文地址:http://blog.csdn.net/jinzhuojun/article/details/8868038 调试Android Java源码 草帽的后花园--Neo 写在之前的话:这里主要是以调试Java源码为主,应该说是在system_process之后的源码,这对于调试和修改frameworks层的人来说真是一个利器,但至于为什么在system_process之后,我还在分析,如果有结果我会更新此文章,并正在尝试调试C++的代码,就是native中的代码,如果这个可行那将会大大

jdk1.8.0_45源码解读——LinkedList的实现

jdk1.8.0_45源码解读——LinkedList的实现 一.LinkedList概述 LinkedList是List和Deque接口的双向链表的实现.实现了所有可选列表操作,并允许包括null值.    LinkedList既然是通过双向链表去实现的,那么它可以被当作堆栈.队列或双端队列进行操作.并且其顺序访问非常高效,而随机访问效率比较低. 注意,此实现不是同步的. 如果多个线程同时访问一个LinkedList实例,而其中至少一个线程从结构上修改了列表,那么它必须保持外部同步.这通常是通

atitit.商业版 源码保护 与 java本地原生代码转换 的方案总结

atitit.商业版 源码保护 与 java本地原生代码转换 的方案总结 1. 为什么虚拟机语言容易被反编译 1 2. 源码泄露的问题问题 1 3. Excelsior JET 1 4. gcj.的流程 2 5. classloader方案,,还凑后 2 6. 制作伪exe,其实和上一种做法是一样的,只不过做成exe,调用系统的java.exe来运行它,这样的工具有nativeJ,exe4j等 3 7. 其他 3 1. 为什么虚拟机语言容易被反编译 ,但虚拟机的中间语言由于带了大量的"元数据&q