【BZOJ4842】[Neerc2016]Delight for a Cat 线性规划+费用流

【BZOJ4842】[Neerc2016]Delight for a Cat

Description

ls是一个特别堕落的小朋友,对于n个连续的小时,他将要么睡觉要么打隔膜,一个小时内他不能既睡觉也打隔膜,因此一个小时内他只能选择睡觉或者打隔膜,当然他也必须选择睡觉或打隔膜,对于每一个小时,他选择睡觉或打隔膜的愉悦值是不同的,对于第i个小时,睡觉的愉悦值为si,打隔膜的愉悦值为ei,同时又有一个奥妙重重的规定:对于任意一段连续的k小时,ls必须至少有t1时间在睡觉,t2时间在打隔膜。那么ls想让他获得的愉悦值尽量大,他该如何选择呢?

Input

第一行四个整数,n,k(1<=k<=n<=1000),t1,t2(0<=t1,t2<=k;t1+t2<=k),含义如上所述。

接下来一行n个整数,第i个整数si(0<=si<=1e9)表示睡觉的愉悦值。

接下来一行n个整数,第i个整数ei(0<=ei<=1e9)表示打隔膜的愉悦值。

Output

第一行输出最大的愉悦值。

接下来一行输出一个长度为n的字符串

第i个字符为E则代表第i小时在打隔膜,第i个字符为S则代表第i个小时在睡觉。

Sample Input

10 4 1 2
1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1

Sample Output

69
EEESESEESS

题解:我们先令所有时间都打隔膜,于是在i时刻睡觉的收益就变成了si-ei。我们令第i时刻是否睡觉的状态为xi(xi=0或1),那么限制条件就变成了如下不等式:$t_1 \le x_i+x_{i+1}+...+x_{i+k-1} \le k-t_2$。我们想要最大化$\sum x_i*(s_i-e_i)$,这显然就变成了一个线性规划问题。如何处理线性规划问题?列单纯形表。

然而今天还是去学了用费用流解线性规划的方法。我们先将不等式转化成标准型,即加入新变量y,z($y,z \in [0,+ \infty ]$)使不等式变成等式:$t_1+y_i=x_i+x_{i+1}+...+x_{i+k-1}=k-t_2-z_i$,接着列出方程组:

$\begin{cases}x_1+x_2+...+x_k=t_1+y_1\\ x_1+x_2+...+x_k=k-t_2-z_1\\ x_2+x_3+...+x_{k+1}=t_1+y_2\\ x_2+x_3+...+x_{k+1}=k-t_2-z_2\\ ...\end{cases}$

根据一个惯用的套路,我们在最下面加入不等式0=0,然后差分,并整理一下:

$\begin{cases}x_1+x_2+...+x_k=t_1+y_1\\ y_1+z_1=(k-t_1-t_2)\\ x_{k+1}+(k-t_1-t_2)=x_2+z_1+y_2\\ y_2+z_2=(k-t_1-t_2)\\ ...\\k-t_2=x_{n-k+1}+x_{n-k+2}+...+x_k+z_{n-k+1}\end{cases}$

我们发现每个变量在等式的左侧和右侧都各出现一次,我们将等式看成点,等式左边看成流出,等式右面看成流入。对于变量x,我们从它流出的点向流入的点连一条边,容量为1费用为si-ei;对于变量y,z,它的容量为$\infty$,费用为0;对于常数项,如果是流出则从该点连向T,流入则从S连向该点,容量为常数项的大小。接着跑最大费用最大流,输出方案时看一下对应的边的容量即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
ll ans,tot;
int n,k,t1,t2,cnt,S,T;
int inq[2010],to[100010],next[100010],flow[100010],pe[2010],pv[2010],head[2010],pos[2010],A[2010],B[2010];
ll cost[100010],dis[2010];
queue<int> q;
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+gc-‘0‘,gc=getchar();
	return ret*f;
}
inline void add(int a,int b,int c,int d)
{
	if(!d)	return ;
	to[cnt]=b,cost[cnt]=c,flow[cnt]=d,next[cnt]=head[a],head[a]=cnt++;
	to[cnt]=a,cost[cnt]=-c,flow[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
inline int bfs()
{
	memset(dis,0x80,sizeof(dis));
	q.push(S),dis[S]=0;
	int u,i;
	while(!q.empty())
	{
		u=q.front(),q.pop(),inq[u]=0;
		for(i=head[u];i!=-1;i=next[i])
		{
			if(dis[to[i]]<dis[u]+cost[i]&&flow[i])
			{
				dis[to[i]]=dis[u]+cost[i],pv[to[i]]=u,pe[to[i]]=i;
				if(!inq[to[i]])	inq[to[i]]=1,q.push(to[i]);
			}
		}
	}
	return dis[T]>ll(0x8080808080808080ll);
}
int main()
{
	n=rd(),k=rd(),t1=rd(),t2=rd();
	S=0,T=((n-k+1)<<1)+2;
	memset(head,-1,sizeof(head));
	int i;
	for(i=1;i<=n;i++)	A[i]=rd();
	for(i=1;i<=n;i++)	B[i]=rd(),tot+=B[i];
	for(i=1;i<=n;i++)	pos[i]=cnt+1,add(max(1,((i-k)<<1)+1),min((i<<1)+1,((n-k+1)<<1)+1),A[i]-B[i],1);
	add(S,1,0,t1);
	for(i=1;i<=n-k+1;i++)
	{
		add(i<<1,(i<<1)-1,0,1<<30),add(i<<1,(i<<1)+1,0,1<<30);
		add(S,i<<1,0,k-t1-t2);
		if(i!=n-k+1)	add((i<<1)+1,T,0,k-t1-t2);
	}
	add(((n-k+1)<<1)+1,T,0,k-t2);
	while(bfs())
	{
		int mf=1<<30;
		for(i=T;i!=S;i=pv[i])	mf=min(mf,flow[pe[i]]);
		ans+=dis[T]*mf;
		for(i=T;i!=S;i=pv[i])	flow[pe[i]]-=mf,flow[pe[i]^1]+=mf;
	}
	printf("%lld\n",tot+ans);
	for(i=1;i<=n;i++)
	{
		if(flow[pos[i]])	printf("S");
		else	printf("E");
	}
	return 0;
}
//2 2 0 0 1 2 2 1
时间: 2024-10-08 20:43:42

【BZOJ4842】[Neerc2016]Delight for a Cat 线性规划+费用流的相关文章

线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)

题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西,使他变成这样 \(x[i]+x[j]+x[k]+...-y[p]==a[p]\) 然后相邻两个式子差分一下 把每个式子看成一个点 那么这样后,在这个题中所有的未知数只会出现在一个方程中 等式左边符号是正的向符号为负的方程连边,费用为代价,如果是补的未知数\(y\),那么费用为零 右边的数是正的连\(s\)

bzoj 4842: [Neerc2016]Delight for a Cat

Description ls是一个特别堕落的小朋友,对于n个连续的小时,他将要么睡觉要么打隔膜,一个小时内他不能既睡觉也打隔膜 ,因此一个小时内他只能选择睡觉或者打隔膜,当然他也必须选择睡觉或打隔膜,对于每一个小时,他选择睡觉或 打隔膜的愉悦值是不同的,对于第i个小时,睡觉的愉悦值为si,打隔膜的愉悦值为ei,同时又有一个奥妙重重的 规定:对于任意一段连续的k小时,ls必须至少有t1时间在睡觉,t2时间在打隔膜.那么ls想让他获得的愉悦值尽 量大,他该如何选择呢? Input 第一行四个整数,n

【bzoj1283】序列 线性规划与费用流

题目描述 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和最大. 输入 第1行三个数N,m,k. 接下来N行,每行一个字符串表示Ci. 输出 最大和. 样例输入 10 5 3 4 4 4 6 6 6 6 6 4 4 样例输出 30 题解 线性规划与费用流 关于线性规划与费用流的具体讲解参见 bzoj1061 . 这道题和那道差不多,都是给出一大堆限制条件,每个变量在限制条件中的出现是连续的. 所以我们

【bzoj1061】[NOI2008]志愿者招募 线性规划与费用流

题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人.布布通过了解得知,一共有M 类志愿者可以招募.其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元.新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案. 输入

【BZOJ4849】[Neerc2016]Mole Tunnels 模拟费用流

[BZOJ4849][Neerc2016]Mole Tunnels Description 鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间有一条隧道,第i个洞内还有ci个食物能供最多ci只鼹鼠吃.一共有m只鼹鼠,第i只鼹鼠住在第pi个洞内,一天早晨,前k只鼹鼠醒来了,而后n-k只鼹鼠均在睡觉,前k只鼹鼠就开始觅食,最终他们都会到达某一个洞,使得所有洞的ci均大于等于该洞内醒着的鼹鼠个数,而且要求鼹鼠行动路径总长度最小.现对于所有的1<=k

【BZOJ-3638&amp;3272&amp;3267&amp;3502】k-Maximum Subsequence Sum 费用流构图 + 线段树手动增广

3638: Cf172 k-Maximum Subsequence Sum Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 174  Solved: 92[Submit][Status][Discuss] Description 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. Input The first line contains integer n (1 ≤ n 

[BZOJ1061] [Noi2008] 志愿者招募 (费用流)

Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i 天至少需要 Ai 个人. 布布通过了解得知,一共有M 类志愿者可以招募.其中第i 类可以从第Si 天工作到第Ti 天,招募费用 是每人Ci 元.新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这 并不是他的特长!于是布布找到了你,希望你帮他设计一种

【网络流24题】No.19 负载平衡问题 (费用流)

[题意] G 公司有 n 个沿铁路运输线环形排列的仓库, 每个仓库存储的货物数量不等. 如何用最少搬运量可以使 n 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入文件示例input.txt517 9 14 16 4 输出文件示例output.txt11 [分析] 其实我觉得这题可以贪心啊..n^2贪心??.没细想.. 打的是费用流.. 大概这样建图: 懒得写了..凌乱之美.. 求满流费用.. 1 #include<cstdio> 2 #include<cstdlib&

POJ 3422 kaka&#39;s matrix trvals(费用流)

#include <iostream> #include <cstring> #include <cstdio> #include <cstdlib> #include <algorithm> #include <vector> #include <queue> #include <stack> #include <set> #include <map> #include <cma