HDU 5393

[background]

保研的事终于告一段落了,之后去北京折腾了一段时间,本以为会在那里实习一个月,谁知道刚去ICT,心中就各种反感,可能是因为LP的态度吧,否则我可能会留在那里读研也说不定。花了两千多,最终灰溜溜的回来了,信心就大受打击。幸好的是,家人给予理解。八月的那一段时间,内心实在十分苦闷,也就很久没刷题了,这也是没办法的事。保研的事一直就缠绕着我,只想着复习复习,最后把线代就又重撸了一遍,把操作系统重新看了一遍,把离散又重新看了一遍,看完后内心其实依然忐忑,生怕面试老师会问各种奇怪的问题,于是又把那些常用的问题自己预备好答案。。。。最终,去的学校还算好吧,但过程中的郁闷、失落,大概没有人能体会到。

这道题是去面试前写的,放了很久没发上来,现在发一下吧。

[main]

移项合并后,你会发现其实就是求a^x=1 mod q,求最小的x。想到欧拉函数,只要欧拉函数的因数中有满足的最小,即可。

由于数其实较大,使用rho分解法,对欧拉中的数分解所有的质数。求那个最小的因数时,只需拿质数去不停地除phi得d,同时验证等式是否成立,直到a^d=1不成立,此时d*质数,又或者phi%d!=0。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll __int64
using namespace std;

ll k,b,x,p;

//****************************************************************
const int S=20;//随机算法判定次数,S越大,判错概率越小

//计算 (a*b)%c.   a,b都是long long的数,直接相乘可能溢出的
//  a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
    a%=c;
    b%=c;
    long long ret=0;
    while(b)
    {
        if(b&1){ret+=a;ret%=c;}
        a<<=1;
        if(a>=c)a%=c;
        b>>=1;
    }
    return ret;
}

//计算  x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
    if(n==1)return x%mod;
    x%=mod;
    long long tmp=x;
    long long ret=1;
    while(n)
    {
        if(n&1) ret=mult_mod(ret,tmp,mod);
        tmp=mult_mod(tmp,tmp,mod);
        n>>=1;
    }
    return ret;
}

//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
    long long ret=pow_mod(a,x,n);
    long long last=ret;
    for(int i=1;i<=t;i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;

bool Miller_Rabin(long long n)
{
    if(n<2)return false;
    if(n==2)return true;
    if((n&1)==0) return false;//偶数
    long long x=n-1;
    long long t=0;
    while((x&1)==0){x>>=1;t++;}
    for(int i=0;i<S;i++)
    {
        long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}

//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始

long long gcd(long long a,long long b)
{
    if(a==0)return 1;//???????
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}

long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(mult_mod(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k){y=x0;k+=k;}
    }
}
//对n进行素因子分解
void findfac(long long n)
{
    if(Miller_Rabin(n))//素数
    {
        factor[tol++]=n;
        return;
    }
    long long p=n;
    while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}

ll getphi(ll q){
	for(int i=0;i<tol;i++) {
		q=q-q/factor[i];
	}
	return q;
}

void uniqued(){
	sort(factor,factor+tol);
	int tt=tol; tol=1;
	for(int i=1;i<tt;i++){
		if(factor[i]!=factor[tol-1])
		factor[tol++]=factor[i];
	}
}

int main(){
	int T,cc;
	scanf("%d",&T);
	while(T--){
		tol=0;
		scanf("%I64d%I64d%I64d%I64d",&k,&b,&x,&p);
		if(!k){puts(b==x?"1":"-1");continue;}
        if(k==1)
        {
            if(!b)puts("1");
            else
            {
                printf("%d\n",p/gcd(b,p));
            }
            continue;
        }
		ll f=p*(k-1),s=(k-1)*x+b;
		ll q=f/gcd(f,s);
        if(q==1){puts("1");continue;}
        if(gcd(k,q)!=1){puts("-1");continue;}
		findfac(q);
		uniqued();
		ll phi=getphi(q);
		tol=0;
		findfac(phi);
		uniqued();
		for(int i=0;i<tol;i++){
			if(phi%factor[i]==0){
				phi/=factor[i];
				while(true){
					if(pow_mod(k,phi,q)!=1ll||phi%factor[i]!=0) break;
					phi/=factor[i];
				}
				if(pow_mod(k,phi,q)!=1ll) phi*=factor[i];
			}
		}
		printf("%I64d\n",phi);
	}
	return 0;
}
时间: 2024-08-04 12:58:43

HDU 5393的相关文章

HDU 6203 ping ping ping [LCA,贪心,DFS序,BIT(树状数组)]

题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=6203] 题意 :给出一棵树,如果(a,b)路径上有坏点,那么(a,b)之间不联通,给出一些不联通的点对,然后判断最少有多少个坏点. 题解 :求每个点对的LCA,然后根据LCA的深度排序.从LCA最深的点对开始,如果a或者b点已经有点被标记了,那么continue,否者标记(a,b)LCA的子树每个顶点加1. #include<Bits/stdc++.h> using namespace std;

HDU 5542 The Battle of Chibi dp+树状数组

题目:http://acm.hdu.edu.cn/showproblem.php?pid=5542 题意:给你n个数,求其中上升子序列长度为m的个数 可以考虑用dp[i][j]表示以a[i]结尾的长度为j的上升子序列有多少 裸的dp是o(n2m) 所以需要优化 我们可以发现dp的第3维是找比它小的数,那么就可以用树状数组来找 这样就可以降低复杂度 #include<iostream> #include<cstdio> #include<cstring> #include

hdu 1207 汉诺塔II (DP+递推)

汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4529    Accepted Submission(s): 2231 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往

[hdu 2102]bfs+注意INF

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2102 感觉这个题非常水,结果一直WA,最后发现居然是0x3f3f3f3f不够大导致的--把INF改成INF+INF就过了. #include<bits/stdc++.h> using namespace std; bool vis[2][15][15]; char s[2][15][15]; const int INF=0x3f3f3f3f; const int fx[]={0,0,1,-1};

HDU 3555 Bomb (数位DP)

数位dp,主要用来解决统计满足某类特殊关系或有某些特点的区间内的数的个数,它是按位来进行计数统计的,可以保存子状态,速度较快.数位dp做多了后,套路基本上都差不多,关键把要保存的状态给抽象出来,保存下来. 简介: 顾名思义,所谓的数位DP就是按照数字的个,十,百,千--位数进行的DP.数位DP的题目有着非常明显的性质: 询问[l,r]的区间内,有多少的数字满足某个性质 做法根据前缀和的思想,求出[0,l-1]和[0,r]中满足性质的数的个数,然后相减即可. 算法核心: 关于数位DP,貌似写法还是

HDU 5917 Instability ramsey定理

http://acm.hdu.edu.cn/showproblem.php?pid=5917 即世界上任意6个人中,总有3个人相互认识,或互相皆不认识. 所以子集 >= 6的一定是合法的. 然后总的子集数目是2^n,减去不合法的,暴力枚举即可. 选了1个肯定不合法,2个也是,3个的话C(n, 3)枚举判断,C(n, 4), C(n, 5) #include <bits/stdc++.h> #define IOS ios::sync_with_stdio(false) using name

hdu 6166 Senior Pan

地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6166 题目: Senior Pan Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 245    Accepted Submission(s): 71 Problem Description Senior Pan fails i

2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/7398272.html 先考虑dp求01串的不同子序列的个数. dp[i][j]表示用前i个字符组成的以j为结尾的01串个数. 如果第i个字符为0,则dp[i][0] = dp[i-1][1] + dp[i-1][0] + 1,dp[i][1] = dp[i-1][1] 如果第i个字符为1,则dp[i][1

HDU 1513 Palindrome:LCS(最长公共子序列)or 记忆化搜索

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 题意: 给你一个字符串s,你可以在s中的任意位置添加任意字符,问你将s变成一个回文串最少需要添加字符的个数. 题解1(LCS): 很神奇的做法. 先求s和s的反串的LCS,也就是原串中已经满足回文性质的字符个数. 然后要变成回文串的话,只需要为剩下的每个落单的字符,相应地插入一个和它相同的字符即可. 所以答案是:s.size()-LCS(s,rev(s)) 另外,求LCS时只会用到lcs[i-