[background]
保研的事终于告一段落了,之后去北京折腾了一段时间,本以为会在那里实习一个月,谁知道刚去ICT,心中就各种反感,可能是因为LP的态度吧,否则我可能会留在那里读研也说不定。花了两千多,最终灰溜溜的回来了,信心就大受打击。幸好的是,家人给予理解。八月的那一段时间,内心实在十分苦闷,也就很久没刷题了,这也是没办法的事。保研的事一直就缠绕着我,只想着复习复习,最后把线代就又重撸了一遍,把操作系统重新看了一遍,把离散又重新看了一遍,看完后内心其实依然忐忑,生怕面试老师会问各种奇怪的问题,于是又把那些常用的问题自己预备好答案。。。。最终,去的学校还算好吧,但过程中的郁闷、失落,大概没有人能体会到。
这道题是去面试前写的,放了很久没发上来,现在发一下吧。
[main]
移项合并后,你会发现其实就是求a^x=1 mod q,求最小的x。想到欧拉函数,只要欧拉函数的因数中有满足的最小,即可。
由于数其实较大,使用rho分解法,对欧拉中的数分解所有的质数。求那个最小的因数时,只需拿质数去不停地除phi得d,同时验证等式是否成立,直到a^d=1不成立,此时d*质数,又或者phi%d!=0。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define ll __int64 using namespace std; ll k,b,x,p; //**************************************************************** const int S=20;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的 // a,b,c <2^63 long long mult_mod(long long a,long long b,long long c) { a%=c; b%=c; long long ret=0; while(b) { if(b&1){ret+=a;ret%=c;} a<<=1; if(a>=c)a%=c; b>>=1; } return ret; } //计算 x^n %c long long pow_mod(long long x,long long n,long long mod)//x^n%c { if(n==1)return x%mod; x%=mod; long long tmp=x; long long ret=1; while(n) { if(n&1) ret=mult_mod(ret,tmp,mod); tmp=mult_mod(tmp,tmp,mod); n>>=1; } return ret; } //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数 //一定是合数返回true,不一定返回false bool check(long long a,long long n,long long x,long long t) { long long ret=pow_mod(a,x,n); long long last=ret; for(int i=1;i<=t;i++) { ret=mult_mod(ret,ret,n); if(ret==1&&last!=1&&last!=n-1) return true;//合数 last=ret; } if(ret!=1) return true; return false; } // Miller_Rabin()算法素数判定 //是素数返回true.(可能是伪素数,但概率极小) //合数返回false; bool Miller_Rabin(long long n) { if(n<2)return false; if(n==2)return true; if((n&1)==0) return false;//偶数 long long x=n-1; long long t=0; while((x&1)==0){x>>=1;t++;} for(int i=0;i<S;i++) { long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件 if(check(a,n,x,t)) return false;//合数 } return true; } //************************************************ //pollard_rho 算法进行质因数分解 //************************************************ long long factor[100];//质因数分解结果(刚返回时是无序的) int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b) { if(a==0)return 1;//??????? if(a<0) return gcd(-a,b); while(b) { long long t=a%b; a=b; b=t; } return a; } long long Pollard_rho(long long x,long long c) { long long i=1,k=2; long long x0=rand()%x; long long y=x0; while(1) { i++; x0=(mult_mod(x0,x0,x)+c)%x; long long d=gcd(y-x0,x); if(d!=1&&d!=x) return d; if(y==x0) return x; if(i==k){y=x0;k+=k;} } } //对n进行素因子分解 void findfac(long long n) { if(Miller_Rabin(n))//素数 { factor[tol++]=n; return; } long long p=n; while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1); findfac(p); findfac(n/p); } ll getphi(ll q){ for(int i=0;i<tol;i++) { q=q-q/factor[i]; } return q; } void uniqued(){ sort(factor,factor+tol); int tt=tol; tol=1; for(int i=1;i<tt;i++){ if(factor[i]!=factor[tol-1]) factor[tol++]=factor[i]; } } int main(){ int T,cc; scanf("%d",&T); while(T--){ tol=0; scanf("%I64d%I64d%I64d%I64d",&k,&b,&x,&p); if(!k){puts(b==x?"1":"-1");continue;} if(k==1) { if(!b)puts("1"); else { printf("%d\n",p/gcd(b,p)); } continue; } ll f=p*(k-1),s=(k-1)*x+b; ll q=f/gcd(f,s); if(q==1){puts("1");continue;} if(gcd(k,q)!=1){puts("-1");continue;} findfac(q); uniqued(); ll phi=getphi(q); tol=0; findfac(phi); uniqued(); for(int i=0;i<tol;i++){ if(phi%factor[i]==0){ phi/=factor[i]; while(true){ if(pow_mod(k,phi,q)!=1ll||phi%factor[i]!=0) break; phi/=factor[i]; } if(pow_mod(k,phi,q)!=1ll) phi*=factor[i]; } } printf("%I64d\n",phi); } return 0; }
时间: 2024-10-05 04:01:50