优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型(必须离散化)和标称型。
决策树创建分支的伪代码函数createBranch():
检测数据集中的每个子项是否属于同一分类:
If so return 类标签;
Else
寻找划分数据集的最好特征
划分数据集
创建分支节点
for 每个划分的子集
调用函数createBranch并增加返回结果到分支节点中
return 分支节点
决策树的一般流程
收集数据:可以使用任何方法。
准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
训练算法:构造树的数据结构。(ID3算法)
测试算法:使用经验树计算错误率。
使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。
划分数据集的大原则是:将无序的数据变得更加有序。
组织杂乱无章数据的一种方法就是使用信息论度量信息。
信息增益:划分数据集之前之后信息发生的变化。(计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。)
集合信息的度量方式称为香农熵或者简称为熵(信息的期望值)。熵越大则数据越无序。
待分类的事务可能划分在多个分类之中,则符号xi 的信息: (p(xi)是选择该分类的概率)
熵(信息的期望值):(n是分类的数目)
对每个特征划分数据集的结果计算一次信息熵,然后判断按照哪个特征划分数据集是最好的划分方式。
递归构建决策树:
工作原理如下:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分。第一次划分之后,数据将被向下传递到树分支的下一个节点,在这个节点上,我们可以再次划分数据。因此我们可以采用递归的原则处理数据集。
递归结束的条件是:程序遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有相同的分类。如果所有实例具有相同的分类,则得到一个叶子节点或者终止块。任何到达叶子节点的数据必然属于叶子节点的分类。
构造决策树是很耗时的任务,即使处理很小的数据集,如前面的样本数据,也要花费几秒的时间,如果数据集很大,将会耗费很多计算时间。然而用创建好的决策树解决分类问题,则可以很快完成。因此,为了节省计算时间,最好能够在每次执行分类时调用已经构造好的决策树。为了解决这个问题,需要使用Python模块pickle序列化对象。
本章代码:(略去画图部分,太繁琐了……)
# -*- coding:utf-8 -*-
from math import log
from numpy import *
import operator
def createDataSet():
dataSet = [[1, 1, ‘yes‘],
[1, 1, ‘yes‘],
[1, 0, ‘no‘],
[0, 1, ‘no‘],
[0, 1, ‘no‘]]
labels = [‘no surfacing‘, ‘flippers‘]
# change to discrete values
return dataSet, labels
# 测量给定数据集的信息熵,度量数据的无序程度,熵越大则数据越无序。
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
labelCounts[currentLabel] = labelCounts.get(currentLabel, 0) + 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt
# 按照给定特征划分数据集(当我们按照某个特征划分数据集时,就需要将所有符合要求的元素抽取出来)
# axis:用来划分数据集的特征(索引值), value:该特征选取的属性值(需要返回的值)
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:]
reducedFeatVec.remove(value)
retDataSet.append(reducedFeatVec)
return retDataSet
# 选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
# 创建唯一的分类标签列表
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
# 计算每种划分方式的信息熵
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
# 计算最好的信息增益
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
classCount = {}
for vote in classList:
classCount[vote] = classCount.get(vote, 0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
# 两个结束条件:类别完全相同或者遍历完所有特征
if len(set(classList)) == 1:
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel: {}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
def classify(inputTree, featLabels, testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == ‘dict‘:
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel
# 使用pickle模块存储决策树
def storeTree(inputTree, filename):
import pickle
fw = open(filename, ‘w‘)
pickle.dump(inputTree, fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename)
return pickle.load(fr)
参考资料:
1. Peter Harrington《机器学习实战》第三章