【目标识别】深度学习进行目标识别的资源列表

【目标识别】深度学习进行目标识别的资源列表:O网页链接 包括RNN、MultiBox、SPP-Net、DeepID-Net、Fast R-CNN、DeepBox、MR-CNN、Faster R-CNN、YOLO、DenseBox、SSD、Inside-Outside Net、G-CNN等。
Papers

Deep Neural Networks for Object Detection

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

[td]


method

ILSVRC 2013 mAP

OverFeat

24.3%

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation(R-CNN)

[td]


method

VOC 2007 mAP

VOC 2010 mAP

VOC 2012 mAP

ILSVRC 2013 mAP

R-CNN,AlexNet

54.2%

50.2%

49.6%
 
R-CNN,bbox reg,AlexNet
58.5%

53.7%

53.3%

31.4%

R-CNN,bbox reg,ZFNet

59.2%
     
R-CNN,VGG-Net
62.2%
     
R-CNN,bbox reg,VGG-Net
66.0%
     

MultiBox

Scalable Object Detection using Deep Neural Networks (MultiBox)

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

[td]

method
VOC 2007 mAP

ILSVRC 2013 mAP

SPP_net(ZF-5),1-model

54.2%

31.84%

SPP_net(ZF-5),2-model

60.9%
 
SPP_net(ZF-5),6-model   35.11%

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

Scalable, High-Quality Object Detection

DeepID-Net

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

[td]


method

VOC 2007 mAP

ILSVRC 2013 mAP

DeepID-Net

64.1%

50.3%

Object Detection Networks on Convolutional Feature Maps

[td]


method

Trained on

mAP

NoC

07+12

68.8%

NoC,bb

07+12

71.6%

NoC,+EB

07+12

71.8%

NoC,+EB,bb

07+12

73.3%

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

[td]


Model

BBoxReg?

VOC 2007 mAP(IoU>0.5)

R-CNN(AlexNet)

No

54.2%

R-CNN(VGG)

No

60.6%

+StructObj

No

61.2%

+StructObj-FT

No

62.3%

+FGS

No

64.8%

+StructObj+FGS

No

65.9%

+StructObj-FT+FGS

No

66.5%

[td]


Model

BBoxReg?

VOC 2007 mAP(IoU>0.5)

R-CNN(AlexNet)

Yes

58.5%

R-CNN(VGG)

Yes

65.4%

+StructObj

Yes

66.6%

+StructObj-FT

Yes

66.9%

+FGS

Yes

67.2%

+StructObj+FGS

Yes

68.5%

+StructObj-FT+FGS

Yes

68.4%

Fast R-CNN

Fast R-CNN

[td]


method

data

VOC 2007 mAP

FRCN,VGG16

07

66.9%

FRCN,VGG16

07+12

70.0%

[td]


method

data

VOC 2010 mAP

FRCN,VGG16

12

66.1%

FRCN,VGG16

07++12

68.8%

[td]


method

data

VOC 2012 mAP

FRCN,VGG16

12

65.7%

FRCN,VGG16

07++12

68.4%

DeepBox

DeepBox: Learning Objectness with Convolutional Networks

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model (MR-CNN)

[td]


Model

Trained on

VOC 2007 mAP

VGG-net

07+12

78.2%

VGG-net

07

74.9%

[td]


Model

Trained on

VOC 2012 mAP

VGG-net

07+12

73.9%

VGG-net

12

70.7%

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(NIPS 2015)

[td]

  training data
test data

mAP

time/img

Faster RCNN, VGG-16

07

VOC 2007 test

69.9%

198ms

Faster RCNN, VGG-16

07+12

VOC 2007 test

73.2%

198ms

Faster RCNN, VGG-16

12

VOC 2007 test

67.0%

198ms

Faster RCNN, VGG-16

07++12

VOC 2007 test

70.4%

198ms

YOLO

You Only Look Once: Unified, Real-Time Object Detection(YOLO)

R-CNN minus R

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

SSD

SSD: Single Shot MultiBox Detector

Inside-Outside Net

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

Detection results on VOC 2007 test:

[td]


Method

R

S

W

D

Train

mAP

FRCN
       
07+12

70.0

RPN
       
07+12

73.2

MR-CNN
   
  07+12
78.2

ION
       
07+12

74.6

ION

      07+12
75.6

ION


   
07+12+S

76.5

ION



  07+12+S
78.5

ION





07+12+S

79.2

Detection results on VOC 2012 test:

[td]


Method

R

S

W

D

Train

mAP

FRCN
       
07++12

68.4

RPN
       
07++12

70.4

FRCN+YOLO
       
07++12

70.4

HyperNet
       
07++12

71.4

MR-CNN
   
  07+12
73.9

ION





07+12+S

76.4

G-CNN

G-CNN: an Iterative Grid Based Object Detector

Learning Deep Features for Discriminative Localization

Factors in Finetuning Deep Model for object detection

We don’t need no bounding-boxes: Training object class detectors using only human verification

A MultiPath Network for Object Detection

Beyond Bounding Boxes: Precise Localization of Objects in Images (PhD Thesis)

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

Training Region-based Object Detectors with Online Hard Example Mining

Specific Object Deteciton

End-to-end people detection in crowded scenes

Tutorials

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

Codes

TensorBox: a simple framework for training neural networks to detect objects in images

Object detection in torch: Implementation of some object detection frameworks in torch

Blogs

Convolutional Neural Networks for Object Detection

http://rnd.azoft.com/convolutional-neural-networks-object-detection/

时间: 2024-11-08 23:32:03

【目标识别】深度学习进行目标识别的资源列表的相关文章

[转]机器学习、深度学习、数据挖掘各种资源整理

Deep Learning(深度学习): ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一 ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二 Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错. deeplearning.net主页,里面包含的信息量非常多,有software, reading list, research lab, dataset, demo等,

【深度学习Deep Learning】资料大全

转载:http://www.cnblogs.com/charlotte77/p/5485438.html 最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books Deep Learning66 by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by

深度学习(综述,2015,应用)

0. 原文 Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey 1. 目标检测 目标检测的目标是在图像中精确定位目标的位置.已经提出了许多使用深度学习算法的工作.我们回顾如下一些有代表性的工作: Szegedy[28]修改了深度卷积网络,用回归层代替最后一层,目的是针对目标的box产生一个binary mask,如图3所示.另外,还提出多尺度策略,来提高检测精度.他们做的

收集一些深度学习视频

<机器学习&&深度学习> 视频课程资源百度云下载. 林轩田:机器学习基石 链接:http://pan.baidu.com/s/1qXSKZP64 密码:dwie 林轩田:機器學習技法 (Machine Learning Techniques)链接:http://pan.baidu.com/s/1i5I0kZj3 密码:zwce andrew Ng视频课程和讲义链接:http://pan.baidu.com/s/1nuT7hUT2 密码:8his hinton 深度学习视频课程链

机器学习&amp;深度学习资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2) <机器学习&&深度学习> 视频课程资源

怎样全面了解和掌握人工智能(深度学习)?

初学者如何快速进入深度学习?如何寻找深度学习相关的好资源?请访问:http://www.aiopens.net ,依据人工智能三要素分类的关键词,在github中使用awesome+deep learning. awesome+blockchain.awesome+docker等关键字进行搜寻,就可以快速找到理想的资源进行学习和实践了. ???? 原文地址:http://blog.51cto.com/5249302/2129776

怎样找到一份深度学习的工作(附学习材料,资源与建议)

原文地址:How to get a job in deep learning 原文翻译与校对:@戴丹 && @胡杨 && 寒小阳 时间:2016年10月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52777661 声明:版权所有,转载请联系作者并注明出 如果你是一个软件工程师(或者你现在正在学习这一方面),你肯定有机会听说过深度学习(有时候深度学习缩写为"DL").它现在是一个热门.且快速

Deep Learning(深度学习)之(四)Deep Learning学习资源

十一.参考文献和Deep Learning学习资源 先是机器学习领域大牛的微博:@余凯_西二旗民工:@老师木:@梁斌penny:@张栋_机器学习:@邓侃:@大数据皮东:@djvu9-- (1)Deep Learning http://deeplearning.net/ (2)Deep Learning Methods for Vision http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/ (3)Neural Network for

转:深度学习课程及深度学习公开课资源整理

http://www.52nlp.cn/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E8%AF%BE%E7%A8%8B%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%85%AC%E5%BC%80%E8%AF%BE%E8%B5%84%E6%BA%90%E6%95%B4%E7%90%86 这里整理一批深度学习课程或者深度学习相关公开课的资源,持续更新,仅供参考. 1. Andrew Ng (吴恩达) 深度学习专项课程 by Courser