Deep Learning 和 Knowledge Graph howto

领军大家:

Geoffrey E. Hinton

http://www.cs.toronto.edu/~hinton/

阅读列表:

reading lists and survey papers for deep learning

http://deeplearning.net/reading-list/

课程和教材:

Deep Learning 教程(邓侃老师力荐,已有中文版面)

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

斯坦福的Deep Learning公开课(2012)

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=DeepLearning

CS294A/CS294W  Deep Learning and Unsupervised Feature Learning - Winter 2011

http://www.stanford.edu/class/cs294a/

网站和博客:

深度学习的一些教程

http://baojie.org/blog/2013/01/27/deep-learning-tutorials/

Deep Learning

http://deeplearning.net/

Deep Learning Tutorials

http://deeplearning.net/tutorial/

Deep Learning 和 Knowledge Graph 引爆大数据革命 【1】 - 邓侃的博客

http://blog.sina.com.cn/s/blog_46d0a3930101fswl.html

tornadomeet

http://www.cnblogs.com/tornadomeet/

[转载]机器学习前沿热点–Deep Learning

http://blog.sciencenet.cn/blog-315535-663215.html

Learning deep architectures for AI

http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/239

谷子粒-Guzili

http://www.guzili.com/

Explanation of the digit movies : These movies illustrate the neural network described in the paper:

http://www.cs.toronto.edu/~hinton/digits.html

原文地址:https://www.cnblogs.com/yaoyaohust/p/10228902.html

时间: 2024-10-31 19:39:18

Deep Learning 和 Knowledge Graph howto的相关文章

Deep Learning(深度学习)学习笔记整理

申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表示才有用呢? 1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算机的手段,双管齐下,研究视觉问题. 他们收集了很多黑白风景照片,从这些照片中,提取出400个小碎片,每个照片碎片的尺寸均为 16x1

Deep Learning(深度学习)学习笔记整理系列之(八)

Deep Learning(深度学习)学习笔记整理系列 [email protected] http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主

Deep Learning(深度学习)学习笔记整理系列 | @Get社区

body { font-family: Microsoft YaHei UI,"Microsoft YaHei", Georgia,Helvetica,Arial,sans-serif,宋体, PMingLiU,serif; font-size: 10.5pt; line-height: 1.5; } html, body { } h1 { font-size:1.5em; font-weight:bold; } h2 { font-size:1.4em; font-weight:bo

机器学习(Machine Learning)&深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本

Deep Learning(深度学习)之(四)Deep Learning学习资源

十一.参考文献和Deep Learning学习资源 先是机器学习领域大牛的微博:@余凯_西二旗民工:@老师木:@梁斌penny:@张栋_机器学习:@邓侃:@大数据皮东:@djvu9-- (1)Deep Learning http://deeplearning.net/ (2)Deep Learning Methods for Vision http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/ (3)Neural Network for

机器学习(Machine Learning)&amp;amp;深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L

Deep Learning(深度学习)学习系列之(八)

Deep Learning(深度学习)学习笔记整理系列 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢. 4)阅读本文需要机器学习.计算机视觉.神经网络等等基础(如果没有也没关系了,没

【转载】Deep Learning(深度学习)学习笔记整理

目录: 一.概述 二.背景 三.人脑视觉机理 四.关于特征 4.1.特征表示的粒度 4.2.初级(浅层)特征表示 4.3.结构性特征表示 4.4.需要有多少个特征? 五.Deep Learning的基本思想 六.浅层学习(Shallow Learning)和深度学习(Deep Learning) 七.Deep learning与Neural Network 八.Deep learning训练过程 8.1.传统神经网络的训练方法 8.2.deep learning训练过程 九.Deep Learn

Graph and Deep Learning

原文: https://devblogs.nvidia.com/parallelforall/intersection-large-scale-graph-analytics-deep-learning/ 摘要: 1)图在社交网络的数据分析中非常重要,而图变的越来越大,尽管内存容量也不断增加,in-memory的图处理仍然有局限,因此使用了一个基于Parallel Sliding Windows (PSW) 的分割技术,减小图处理对内存的需要. 2)图的并行化,基于edge的处理,比较容易负载均