分类与监督学习,朴素贝叶斯分类算法

1.理解分类与监督学习、聚类与无监督学习。

简述分类与聚类的联系与区别?

分类与聚类:是把某个对象划分到某个具体的已经定义的类别当中,而聚类是把一些对象按照具体特征组织到若干个类别里。

虽然都是把某个对象划分到某个类别中,但是分类的类别是已经预定义的,而聚类操作时,某个对象所属的类别

却不是预定义的,而是可以根据情况做若干个聚类中心。

简述什么是监督学习与无监督学习。

监督学习与无监督学习:对于新的实例,监督学习可以用于映射出该实例的类别。 对于无监督学习,我们只知道特征,并不知

道答案,不同的实例具有一定的相似性,把那些相似的聚集在一起。

2.朴素贝叶斯分类算法 实例

利用关于心脏情患者的临床数据集,建立朴素贝叶斯分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:–心梗–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I‘,饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传演算过程。

演算过程:

3.编程实现朴素贝叶斯分类算法

利用训练数据集,建立分类模型。

输入待分类项,输出分类结果。

可以心脏情患者的临床数据为例,但要对数据预处理。

代码:

#3.编程实现朴素贝叶斯分类算法
from sklearn.datasets import load_iris
iris = load_iris()
iris.data[55]
iris.target[55]
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB() #模型
gnb.fit(iris.data,iris.target)   #训练
gnb.predict([iris.data[12]])    #分类

运行结果:

原文地址:https://www.cnblogs.com/123-feng/p/9962622.html

时间: 2024-09-30 01:52:23

分类与监督学习,朴素贝叶斯分类算法的相关文章

朴素贝叶斯分类算法(1)

转自http://blog.csdn.net/lch614730/article/details/17031145 朴素贝叶斯分类算法(Naive Bayesian classification) PS:本文在讲解的时候会用通俗的例子来讲解 本文我们将学习到: (1)什么是朴素贝叶斯? (2)先验概率和条件概率是如何证明的? (3)文本分类的多项式模型和伯努利模型(附加例子说明) (4)垃圾邮件的分类及代码的演示(暂缺以后会补上) (1)什么是朴素贝叶斯(Naive Bayes,以后简称NB)?

朴素贝叶斯分类算法介绍及python代码实现案例

朴素贝叶斯分类算法 1.朴素贝叶斯分类算法原理 1.1.概述 贝叶斯分类算法是一大类分类算法的总称 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据 朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种 注:朴素的意思是条件概率独立性 P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立 P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z) 1.2.算法思想 朴素贝叶斯的思想是这样的: 如果一个事物在一些属性条件发生

朴素贝叶斯分类算法原理分析与代码实现

前言 本文介绍机器学习分类算法中的朴素贝叶斯分类算法并给出伪代码,Python代码实现. 词向量 朴素贝叶斯分类算法常常用于文档的分类,而且实践证明效果是挺不错的. 在说明原理之前,先介绍一个叫词向量的概念. --- 它一般是一个布尔类型的集合,该集合中每个元素都表示其对应的单词是否在文档中出现. 对应关系和词汇表一一对应. 比如说,词汇表只有三个单词:'apple', 'orange', 'melo',某文档中,apple和melo出现过,那么其对应的词向量就是 {1, 0, 1}. 这种模型

数据挖掘系列(8)朴素贝叶斯分类算法原理与实践

隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践. 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来.公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X的情况下求Yk类别的概率,而对P(Yk|X)的计算又全部转化到类别Yk的特征分布上来. 举个例子,大学的时候,某男生经常去图

基于朴素贝叶斯分类算法的邮件过滤系统

转自穆晨 阅读目录 前言 准备数据:切分文本 训练并测试 小结 回到顶部 前言 朴素贝叶斯算法最为广泛而经典的应用毫无疑问是文档分类,更具体的情形是邮件过滤系统. 本文详细地讲解一个基于朴素贝叶斯分类算法的邮件过滤系统的具体实现. 本文侧重于工程实现,至于其中很多算法的细节请参考之前的一篇文章:朴素贝叶斯分类算法原理分析与代码实现. 回到顶部 准备数据:切分文本 获取到文本文件之后,首先要做的是两件事情: 1. 将文本文件转换为词汇列表 2. 将上一步的结果进一步转换为词向量 对于 1,具体来说

第五篇:朴素贝叶斯分类算法原理分析与代码实现

前言 本文介绍机器学习分类算法中的朴素贝叶斯分类算法并给出伪代码,Python代码实现. 词向量 朴素贝叶斯分类算法常常用于文档的分类,而且实践证明效果挺不错的. 在说明原理之前,先介绍一个叫词向量的概念. --- 它一般是一个布尔类型的集合,该集合中每个元素都表示其对应的单词是否在文档中出现. 比如说,词汇表只有三个单词:'apple', 'orange', 'melo',某文档中,apple和melo出现过,那么其对应的词向量就是 {1, 0, 1}. 这种模型通常称为词集模型,如果词向量元

第六篇:基于朴素贝叶斯分类算法的邮件过滤系统

前言 朴素贝叶斯算法最为广泛而经典的应用毫无疑问是文档分类,更具体的情形是邮件过滤系统. 本文详细地讲解一个基于朴素贝叶斯分类算法的邮件过滤系统的具体实现. 本文侧重于工程实现,至于其中很多算法的细节请参考之前的一篇文章:朴素贝叶斯分类算法原理分析与代码实现. 准备数据:切分文本 获取到文本文件之后,首先要做的是两件事情: 1. 将文本文件转换为词汇列表 2. 将上一步的结果进一步转换为词向量 对于 1,具体来说,就是将文本文件以非字母或数字之外的字符为界进行切割. 仅仅使用字符串的 split

算法 - 朴素贝叶斯分类算法

带你搞懂朴素贝叶斯分类算法 带你搞懂朴素贝叶斯分类算 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法.这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解. 1  分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程.例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人:你可能经常会走在路上对身旁的朋友说“这个人一看就很

朴素贝叶斯分类算法:对贝叶斯公式的理解

为了完成自己的毕业论文,不得不接触这个朴素贝叶斯分类算法...真是惭愧啊(快毕业了才学这个...还初识) 哈哈,不过只要肯学什么时候都不会晚 要想完全理解这个算法,必须先去百度一下 原来朴素贝叶斯分类算法是借用到了贝叶斯定理,那什么是贝叶斯定理呢...不多BB, 先看一看什么是条件概率:P(A|B)=P(AB)/P(B) 其中P(A|B)指的是在B已经发生的情况下A发生的概率.而这个概率是由A和B同时发生的概率除以B发生的概率.点解???这是我第一次看到这个公式后的反应 当我看完这张图后,就差不