Pi和e的积分

Evaluate integral

$$\int_{0}^{1}{x^{-x}(1-x)^{x-1}\sin{\pi x}dx}$$

Well,I think we have

$$\int_{0}^{1}{x^{-x}(1-x)^{x-1}\sin{\pi x}dx}=\frac{\pi}{e}$$

and

$$\int_{0}^{1}{x^{x}(1-x)^{1-x}\sin{\pi x}dx}=\frac{e\pi}{24}$$

With such nice result of these integral,why isn‘t worth to evaluate it?

I found a solution about the second one,but I wonder it will work for the first one

Note

$$ S=\int_{0}^{1}{\sin{\pi x}x^{x}(1-x)^{1-x}dx}-\int_{0}^{1}{(1-x)e^{(i\pi+\ln{x}-\ln{(1-x)})x}dx} $$

Let $t=\ln{x}-\ln{(1-x)}$,$x=\frac{e^{t}}{1+e^{t}}$

Thus

\begin{align}S&=\int_{-\infty}^{+\infty}{\frac{1}{e^{t}+1}e^{(i\pi+t)\frac{e^{t}}{1+e^t}}\frac{e^{t}}{(1+e^{t})^{2}}dt}\\ &=\int_{-\infty+i\pi}^{-\infty-i\pi}{e^{\frac{te^{t}}{e^{t}-1} } \frac{e^{t}}{(e^{t}-1)^{3}}dt}\end{align}

Due to

$$ f(z)=e^{\frac{te^{t}}{e^{t}-1} } \frac{e^{t}}{(e^{t}-1)^{3}},\qquad D=\{Z\in C|-\pi\leq Im(z) \leq \pi\}$$

Therefore

$res(f,0)=-\frac{e}{24}$when $z=0$

with $ \zeta_{R}=\gamma_{R}+o_{R}+\tau_{R}$

$$\oint_{\zeta_{R}}{f(z)dz}=-2\pi i\cdot res(f,0)=\frac{2i\pi e}{24}$$

because

$$ \{z_{n}\}\subset D,\qquad |z_{n}|\rightarrow\infty $$

Therefore

$$ 2S=2\lim_{R\rightarrow \infty}\int_{\gamma_{R}}{f(z)dz} $$

gives

$$ \int_{0}^{1}{\sin{\pi x}x^{x}(1-x)^{1-x}dx}=Im(S)=\frac{e\pi}{24} $$

My friend tian_275461 told me he use a simliar method to deal with the first one to obtain the result $\frac{\pi}{e}$,but I am not figure it out.



第一个积分的解答:

Exactly the same method works for the other case.

$$\int_0^1 x^{-x} (1-x)^{x-1}\sin{\pi x} dx = \mathrm{Im}\left[\int_0^1 \frac{e^{(i\pi+\ln(1-x)-\ln x)x}}{1-x}dx\right]$$

Write $t=\ln((1-x)/x)$ and $z=t+i\pi$ as you did above to get

$$S = \int_0^1 \frac{e^{(i\pi+\ln(1-x)-\ln x)x}}{1-x}dx=\int_{-\infty+i\pi}^{\infty+i\pi} \frac{e^{\frac{z}{1-e^z}}}{1-e^z}dz$$

Then with $$f(z)=\frac{e^{\frac{z}{1-e^z}}}{1-e^z}$$

the only pole is at $z=0$, $res(f,0)=-\frac{1}{e}$ and in the limit $2S = \oint f(z)dz=-2\pi i \cdot res(f,0) = 2\pi i/e$ and your answer follows.



第二个积分的另一种求法:

This one can be done with "residue at infinity" calculation. This method is shown in the Example VI of http://en.wikipedia.org/wiki/Methods_of_contour_integration .

First, we use $z^z = \exp ( z \log z )$ where $\log z$ is defined for $-\pi\leq \arg z < \pi$.

For $(1-z)^{1-z} = \exp ( (1-z)\log (1-z) )$, we use $\log (1-z)$ defined for $0\leq \arg(1-z) <2\pi$.

Then, let  $f(z)= \exp( i\pi z + z \log z + (1-z) \log (1-z) )$.

As shown in the Ex VI in the wikipedia link, we can prove that $f$ is continuous on $(-\infty, 0)$ and $(1,\infty)$, so that the cut of $f(z)$ is $[0,1]$.

We use the contour: (consisted of upper segment: slightly above $[0,1]$, lower segment: slightly below $[0,1]$, circle of small radius enclosing $0$, and circle of small radius enclosing $1$, that looks like a dumbbell having knobs at $0$ and $1$, can someone edit this and include a picture of it please? In fact, this is also the same contour as in Ex VI, with different endpoints.)

On the upper segment, the function $f$ gives, for $0\leq r \leq 1$,

$$\exp(i\pi r) r^r (1-r)^{1-r} \exp( (1-r) 2\pi i ).$$

On the lower segment, the function $f$ gives, for $0\leq r \leq 1$,

$$\exp(i\pi r) r^r(1-r)^{1-r}. $$

Since the functions are bounded, the integrals over circles vanishes when the radius tend to zero.

Thus, the integral of $f(z)$ over the contour, is the integral over the upper and lower segments, which contribute to

$$\int_0^1 \exp(i\pi r) r^r (1-r)^{1-r} dr - \int_0^1 \exp(-i\pi r) r^r(1-r)^{1-r} dr$$

which is

$$2i \int_0^1 \sin(\pi r) r^r (1-r)^{1-r} dr.$$

By the Cauchy residue theorem, the integral over the contour is

$$-2\pi i \textrm{Res}_{z=\infty} f(z) = 2\pi i \textrm{Res}_{z=0} \frac{1}{z^2} f(\frac 1 z).$$

From a long and tedious calculation of residue, it turns out that the value on the right is

$$2i \frac{\pi e}{24}.$$

Then we have the result:

$$ \int_0^1 \sin(\pi r) r^r (1-r)^{1-r} dr = \frac{\pi e}{24}.$$

我们也可得到\begin{align*} \int_{0}^{1} e^{i \pi x} \, x^{x} (1-x)^{1-x} \, dx = i \, \frac{\pi e}{4!} \end{align*}

来自:http://math.stackexchange.com/questions/324647/integrate-int-01x-x1-xx-1-sin-pi-xdx

http://math.stackexchange.com/questions/958624/prove-that-int-01-sin-pi-xxx1-x1-x-dx-frac-pi-e24



[Torsten Carleman][1] $[2]$ proved in 1922 that
> $$
\sum_{n=1}^\infty\left(a_1a_2\cdots a_n\right)^{1/n} < e\sum_{n=1}^\infty a_n,
$$

where $a_n \geq 0$, $n=1,2,\dots$, and $0 < \sum_{n=1}^\infty a_n < \infty$. Thenceforth, this result is known as [Carleman‘s inequality][2]. There exists a number of refined versions of Carleman‘s original work $[3, 6]$. It has turned out that the following generalization is – from our point of view – important, which is proved by Yang $[7]$:
$$
\sum_{n=1}^\infty\left(a_1a_2\cdots a_n\right)^{1/n} < e\sum_{n=1}^\infty \left(1-\sum_{k=1}^6 \frac{b_k}{(n+1)^k}\right)a_n,
$$

with $b_1 = 1/2, b_2 = 1/24, b_3 = 1/48, b_4 = 73/5670, b_5 = 11/1280, b_6 = 1945/580608$.
On the last page of his paper, Yang $[7]$ conjectured that if
$$
\left(1+\frac{1}{x}\right)^x = e\left(1-\sum_{n=1}^\infty \frac{b_n}{(x+1)^n}\right), \quad x>0,
$$

then $b_n > 0$, $n=1,2,\dots.$ In fact, the constants $b_4$ and $b_6$ are not corrent in Yang‘s work, the correct values are $b_4 = 73/5760$ and $b_6 = 3625/580608$. Later, this conjecture was proved and discussed by Yang $[8]$, Gylletberg and Ping $[4]$, and Yue $[9]$. They are using the recurrence
$$
b_1 = \frac12, \quad b_n = \frac{1}{n}\left(\frac{1}{n+1} - \sum_{k=0}^{n-2} \frac{b_{n-k-1}}{k+2} \right), \quad n = 2,3,\dots.
$$
The recurrence is given in a somewhat more compact form in Finch‘s manuscript $[3]$, as the following:
> $$
b_0 = -1, \quad b_n = -\frac{1}{n}\sum_{k=1}^{n} \frac{b_{n-k}}{k+1}, \quad n = 1,2,\dots.
$$

The first ten values of the sequence are listed in the next table.
\begin{array} {|r|r|}
\hline
b_0 & -1 \\ \hline b_1 & 1/2 \\ \hline b_2 & 1/24 \\ \hline b_3 & 1/48 \\ \hline b_4 & 73/5760 \\ \hline b_5 & 11/1280 \\ \hline b_6 & 3625/580608 \\ \hline b_7 & 5525/1161216 \\ \hline b_8 & 5233001/1393459200 \\ \hline b_9 & 1212281/398131200 \\ \hline b_{10} & 927777937/367873228800 \\
\hline
\end{array}
The numerators are recorded as [A249276][3], and the denominators as [A249277][4] in the [OEIS][5]. I‘ve calculated the $b_n$ sequence in the range $n=0,\dots,32$, the elements are listed [here][6].

The following theorem is proved in general in the paper by Hu and Mortici $[5]$, and for the special cases $n=0$ and $n=1$ in the paper by Alzer and Berg $[1]$.

For all integer $n \geq 0$, we have
> $$
\int_0^1 x^n\sin\left(\pi x\right)x^x\left(1-x\right)^{1-x}\,dx = b_{n+2}\pi e.
$$

The special case $n=0$ answers my question.

----------
**References**

1. H. Alzer, C. Berg, [*Some classes of completely monotonic functions*][7], Annales Academi? Scientiarum Fennic? Mathematica, 27, 2002, 445–460. ([pdf][8])
2. T. Carleman, [*Sur les fonctions quasi-analytiques*][9], Comptes rendus du Ve Congres des Mathematiciens Scandinaves, Helsinki (Helsingfors), 1922, 181–196.
3. S. Finch, [*Carleman‘s Inequality*][10], manuscript, 2013.
4. M. Gyllenberg, Y. Ping, [*On a conjecture by Yang*][11], Journal of Mathematical Analysis and Applications, 264(2), 2001, 687–690.
5. Y. Hu, C. Mortici, [*On the coefficients of an expansion of $(1+1/x)^x$ related to Carleman‘s inequality*][12], manuscript, arXiv:1401.2236, 2014.
6. M. Johansson, L.-E. Persson, A. Wedestig, [*Carleman‘s inequality - History, proofs and some new generalizations*][13], Journal of Inequalities in Pure and Applied Mathematics, 4(3), 2003.
7. X. Yang, [*On Carleman’s inequality*][14], Journal of Mathematical Analysis and Applications, 253(2), 2001, 691–694.
8. X. Yang, [*Approximations for constant $e$ and Their Applications*][15], Journal of Mathematical Analysis and Applications, 262(2), 2001, 651–659.
9. H. Yue, [*A Strengthened Carleman’s Inequality*][16], Communications in Mathematical Analysis, 1(2), 2006, 115–119. ([pdf][17])

----------
**Related**

This answer is related to the following stackexchange questions:

- [On the search for an explicit form of a particular integral][18]
- [Two curious “identities” on $x^x, e$, and $\pi$][19]
- [Evaluating an integral using real methods][20]

[1]: https://en.wikipedia.org/wiki/Torsten_Carleman
[2]: http://mathworld.wolfram.com/CarlemansInequality.html
[3]: http://oeis.org/A249276
[4]: http://oeis.org/A249277
[5]: http://oeis.org/
[6]: http://mathb.in/145272?key=677ade0f6738b4bc973f3955937b952544a82225
[7]: http://www.acadsci.fi/mathematica/Vol27/alzer.html
[8]: http://www.acadsci.fi/mathematica/Vol27/alzer.pdf
[9]: https://www.researchgate.net/publication/247679096_Sur_les_functions_quasi-analytiques
[10]: https://oeis.org/A219245/a219245.pdf
[11]: http://www.sciencedirect.com/science/article/pii/S0022247X01977029
[12]: https://arxiv.org/abs/1401.2236
[13]: https://www.researchgate.net/publication/237246073_Carleman%27s_inequality-history_proofs_and_some_new_generalizations
[14]: http://www.sciencedirect.com/science/article/pii/S0022247X00971555
[15]: http://www.sciencedirect.com/science/article/pii/S0022247X01975924
[16]: http://math-res-pub.org/cma/1/2/strengthened-carleman%E2%80%99s-inequality
[17]: https://www.ripublication.com/cma_files/cmav1n2_6.pdf
[18]: https://mathoverflow.net/questions/215816/on-the-search-for-an-explicit-form-of-a-particular-integral
[19]: https://math.stackexchange.com/questions/242587/two-curious-identities-on-xx-e-and-pi
[20]: https://mathoverflow.net/questions/226870/evaluating-an-integral-using-real-methods



This is something I am absolutely cautious to share, but I feel the need unveil anyway. I have lost some will to believe this is a significant result due to doubts expressed by other mathematicians who I have corresponded with, so this led me to construe this might not be important after all. I have read about these integrals supposedly popping up in the work of Ramanujan, though I have found no reliable source, and Bruce Berndt still has yet to get back to me.:/

This project started when I was curious what parametrizations would be needed to encapsulate impressive information about the following integrals:

\begin{align}
&\int_0^1 \sin(\pi x) x^x(1-x)^{1-x} \, dx &= \frac{\pi e}{24} \\
&\int_0^1 \frac{\sin(\pi x)}{x^x(1-x)^{1-x}}\, dx &= \frac{\pi }{e} \\
&\int_0^1 \frac{\sin(\pi x)}{x(1-x)}\frac{1}{x^x(1-x)^{1-x}}\, dx &= 2\pi
\end{align}

However, as it turns out, I was able to show they are related via the following theorem.

$\textbf{Theorem}$ For $m, q \in \mathbb{Z}$, and $m+q+1 \geq 0$,
$$ \int_0^1 x^m \sin\left(\pi q x \right) \left(x^x (1-x)^{1-x}\right)^q\ dx = (-1)^{q+1} \frac{d_{m+q+1}(q)}{(m+q+2)!_\mathbb{P}} \pi e^{q}$$
where $d_n(q)$ is a primitive polynomial of $\mathbb{Z}[x]$ of degree $n$, and $ n!_\mathbb{P}$ is the Bhargava factorial over the set of primes.

In addition, these rational numbers satisfy a neat recurrence relation, of which Carleman‘s inequality is a [special case][1] of:

$$\frac{d_{n}(q)}{(n+1)!_\mathbb{P}} = -\frac{q}{n} \sum_{k=1}^n \frac{d_{n-k}(q)}{(n-k+1)!_\mathbb{P}} \frac{1}{k+1}; \; d_0(q) = -1,\; \text{if} \,(q=0).$$

Using these results, we can unlock a whole class of crazy stuff:

\begin{align*}\sum_{j=1}^n A_j(1-\alpha_j)^{q\left(1-\frac{1}{\alpha_j}\right)}&= (-1)^q\int_0^1 \frac{\sin\left(\pi q x \right)}{\pi x} \frac{\left[x^x\left(1-x\right)^{1-x}\right]^q}{x^q} \prod_{j=1}^n \frac{1}{1-\alpha_j x}\ dx,
\end{align*}
\begin{align*}
A_j = \prod_{k=1, k\neq j}^n \frac{\alpha_j}{\alpha_j-\alpha_k}, \quad \alpha_j \in (0,1).
\end{align*}

Here are some special values:
\begin{align}
&\int_0^1 \frac{\sin\left( \pi x \right)}{ (1-x)\left[x^x\left(1-x\right)^{1-x}\right]} \ dx = \pi \quad \quad &\int_0^1 \frac{\sin\left( \pi x \right)}{(1-x^2)\left[x^x\left(1-x\right)^{1-x}\right]} \ dx &= \frac{5\pi}{8}
\end{align}

I don‘t want to reveal too much anyway. Enjoy!
[1]: http://www.people.fas.harvard.edu/~sfinch/csolve/crl.pdf



来源:https://math.stackexchange.com/questions/516001/what-is-the-most-surprising-result-that-you-have-personally-discovered/1884617#1884617



The Ramanujan Cos/Cosh Identity is stated [here](http://mathworld.wolfram.com/RamanujanCosCoshIdentity.html) as
$$\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\theta}{\cosh n\pi}\right]^{-2}+
\left[1+2\sum_{n=1}^{\infty}\frac{\cosh n\theta}{\cosh n\pi}\right]^{-2}=
\frac{2\Gamma^4\left(\frac34\right)}{\pi}$$

Then there is a line:

> Equating coefficients of $\theta^0$, $\theta^4$, and $\theta^8$ gives
> some amazing identities for the hyperbolic secant.

Those identities are given [here](http://mathworld.wolfram.com/HyperbolicSecant.html).

So I have two questions:

1. How do we get those formulas from the Cos/Cosh identity?

2. Are there similar identities? (similar to Cos/cosh identity)



It will be helpful to start from an explanation of the origin and the proof of the Ramanujan identity. These are hidden (not very deeply) in the theory of elliptic functions.

Indeed, Jacobi elliptic function $\operatorname{dn}(z,k)$ [has Fourier series](http://dlmf.nist.gov/22.11)
$$\operatorname{dn}(z,k)=\frac{\pi}{2K}\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\pi\frac{z}{K}}{\cosh n \pi \frac{K‘}{K}}\right],$$
where $K(k)$ denotes complete elliptic integral and $K‘(k)=K(\sqrt{1-k^2})$ the complementary one. The Ramanujan Cos/Cosh identity is thus equivalent to showing that
$$\operatorname{dn}^{-2}\left(\frac{K_1}{\pi}\theta,k_1\right)+\operatorname{dn}^{-2}\left(\frac{iK_1}{\pi}\theta,k_1\right)=\frac{8\Gamma^4\left(\frac34\right)K_1^2}{\pi^3},\tag{1}$$
where $k_1=\frac{1}{\sqrt2}$ is the first [elliptic integral singular value](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html) and $K_1:=K(k_1)=K‘(k_1)$.

The right hand side of (1) is independent on $\theta$ and is readily shown to be equal to $2$ using e.g. formula (3) from the [same page](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html). Therefore it remains to show that for any $\sigma\in\mathbb{C}$ one has
$$\operatorname{dn}^{-2}\left(\sigma,k_1\right)+\operatorname{dn}^{-2}\left(i\sigma,k_1\right)=2.$$
I leave this last point to you as an exercise (hint: use [Jacobi‘s imaginary transformation](http://mathworld.wolfram.com/JacobisImaginaryTransformation.html)).

----------
Hopefully it is now clear that one can construct many generalizations of Ramanujan identity. Such constructions would involve two basic ingredients:

- Fourier series of elliptic functions,

- elliptic integral singular values.

Indeed, pick your favorite identity satisfied by the elliptic functions. The first ingredient will transform them into trigonometric series. The second one will allow to replace the elliptic modulus by algebraic numbers and the corresponding half-periods by misteriously-looking combinations of gamma functions of rational arguments.

----------
P.S. The first question is just Taylor expansion in $\theta$ (for instance, set $\theta=0$ in the Ramanujan identity and see what happens).

来源:https://math.stackexchange.com/questions/517409/extensions-of-ramanujans-cos-cosh-identity/955420#955420



I am Brian Diaz, and I am new to the math.stackexchange community.

I have been struggling with attempting to find a closed form of the following series:

$$ \varphi(\theta) = 1 + 2\sum_{n=1}^{\infty} \frac{\cosh(n\theta)}{\cosh(n\pi)} $$

Admittedly, I attempted to convert it to a "workable integral", but to no avail. Heck, in the process of converting it to an integral, I am not even sure interchanging the sum and the integral was valid. Nevertheless, this was my result.
$$\frac{1}{\pi}\int_{-\infty}^{\infty} \frac{\sin(x)}{\cosh(\theta) - \cos(x)} \frac{1}{\cosh(x)}dx $$

This was derived from a problem Ramanujan was working. For those who are interested in the source, you can visit http://mathworld.wolfram.com/RamanujanCosCoshIdentity.html. Note: Even if it does not have a closed form, I am still interested in valuable insight to the problem. In addition, I have been reported by my professor to consider applying residue theory, though he his not so sure what the result would be.

Thank you so much for your support, and I hope you do have a blessed day!



The closed form involves Jacobi elliptic function $\operatorname{dn}(z,k)$, which has [Fourier series](http://dlmf.nist.gov/22.11)
$$\operatorname{dn}(z,k)=\frac{\pi}{2K}\left[1+2\sum_{n=1}^{\infty}\frac{\cos n\pi\frac{z}{K}}{\cosh n \pi \frac{K‘}{K}}\right],$$
where $K(k)$ denotes complete elliptic integral and $K‘(k)=K(\sqrt{1-k^2})$ the complementary one.

Now if we denote $k_1=\frac{1}{\sqrt2}$ the first [elliptic integral singular value](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html) and
$$K_1:=K(k_1)=K‘(k_1)=\frac{\Gamma^2\left(\frac14\right)}{4\sqrt{\pi}},$$
the sum can be expressed as
$$\boxed{\displaystyle \quad \varphi\left(\theta\right):=1+2\sum_{n=1}^{\infty}\frac{\cosh n\theta}{\cosh n \pi}=\frac{2K_1}{\pi}\,\operatorname{dn}\left(\frac{iK_1\theta}{\pi},k_1\right)\quad}$$

**P.S.** To check the answer with Mathematica, note that the latter uses $k^2$ instead of $k$ in the arguments of $\mathrm{EllipticK[}\cdot\mathrm{]}$ and $\mathrm{JacobiDN[}z,\cdot\mathrm{]}$. For example, $K_1$ is evaluated with $\mathrm{EllipticK[}\frac12\mathrm{]}$.

**P.P.S** This transforms the proof of Ramanujan cos/cosh identity into a one-line calculation involving [Jacobi imaginary transformation](http://mathworld.wolfram.com/JacobisImaginaryTransformation.html) for $\operatorname{dn}(z,k)$, as explained [here](https://math.stackexchange.com/a/955420/73025).

来源:https://math.stackexchange.com/questions/946071/a-problem-of-ramanujans-interest-closed-form-of-1-2-sum-n-1-infty-fra



Rather than relying on the consequences of Schanuel‘s conjecture, I set about using the same ideas Apery had used to construct integer arguments converging fast enough to show $\zeta(3)$ is irrational in a form Beukers had introduced. I‘m sure someone out there can crack what I have so far.

I will be using the following facts:

>**Theorem 1**: Suppose the complex-valued function $$\begin{align}
f{(z)} = \begin{cases}
-\left(\frac{1}{e}(1-z)^{1-\frac{1}{z}} \right)^q, & z\neq 0 \\
-1, & z = 0
\end{cases}
\end{align}$$ has a power series with positive radius of convergence of the form
$$f(z) = \sum_{n=0}^\infty b_n(q) z^n$$
Then
$$b_n(q) = -\frac{q}{n} \sum_{k=1}^n \frac{b_{n-k}(q)}{k+1}, \quad b_0(q) = -1$$

Note that $b_n(q)$ is a polynomial of degree $n$.
>**Theorem 2**: Let $m,q \in \mathbb{Z}$ and $m+q+1 \geq 0$; then $$\int_0^1 x^m \sin(\pi q x) \left(x^x (1-x)^{1-x}\right)^q \ dx = (-1)^{q+1} \pi e^q b_{m+q+1}(q)$$

The above can be shown by applying contour integration and residue theorem to the above function.

> **Theorem 3**: For $n \in \mathbb{N} \cup \{0\}$, $\mathbb{P}$ be the set of primes, and let $$(n+1)!_\mathbb{P} = \prod_{p \in \mathbb{P}} p ^{\sum_{k\geq 0} \left\lfloor \frac{n}{(p-1)p^k} \right\rfloor}$$
> Then, for integer $q$, $(n+1)!_\mathbb{P} \cdot b_n(q)$ is an integer for $n \geq 0$.

This factorial like function is borrowed from Manjul Bhargava‘s work on the general factorial function.
>**Theorem 4** Let $n \in \mathbb{N} \cup \{0\}$; then $$(n+1)!_\mathbb{P}\sim e^{n(C-\gamma+o(1))}n^n$$ where $C = \sum_{p \in \mathbb{P}} \frac{\ln p }{(p-1)^2}$ and $\gamma$ is the Euler-Mascheroni constant.

If we let $P_n(x)$ be a polynomial of degree $n$ with integer coefficients and let $$I_n = \int_0^1 P_n(x) \left( \sin(\pi q x) \left( x^x (1-x)^{1-x}\right)^q -1\right) \ dx$$

We have the following inequality, in the form of Dirichlet‘s irrationality criterion,

$$0 < \left|C_n \pi e^q - D_n \right| = \left|(n+q+2)!_\mathbb{P} (n+1) I_n \right|$$

where $C_n, D_n \in \mathbb{Z}$. Of course, we can apply Theorem 4, and have something more familiar to work with.

>Question: Can we construct a polynomial $P_n(x)$ such that, for large $n$, $$\left|(n+q+2)!_\mathbb{P} (n+1) I_n \right| \to 0 \text{?}$$

If there does exist one, then, for $q \geq -2, q \neq 0$, the number $\pi e^q$ is irrational. Letting $q = 1, -1$, and the result follows.

I‘ve been at this problem for some time, with no further progress. Frankly, I don‘t know what to do at all. If it helps, I‘ve considered the shifted Legendre polynomials, as Beukers had done, though to no avail.

Most of what I‘ve seen regarding the nature of constructing a polynomial is that it belongs to the family of *orthogonal polynomials*.

God bless.



This isn‘t really an answer as much as it is an "expanded" comment.

Consider, for integer $a$, $$P_n(x) = \frac{1}{n!} \frac{d^n}{d x^n} x^n (1-ax)^n = \sum_{m=0}^n \binom{n}{m} \binom{n+m}{m} (-ax)^m$$

Given $$I_n = \int_0^1 P_n(x) \left( \sin(\pi q x) (x^x(1-x)^{1-x})^q - 1\right) \ dx$$
We have
$$I_n \leq \int_0^1 P_n(x) \left( \sin(\pi q x) a_q - 1\right) \ dx$$ where $a_q = \max_{x\in (0,1)}\{(x^x(1-x)^{1-x})^q\}$. Furthermore, we have
$$\left|\int_0^1 P_n(x) \left( \sin(\pi q x) a_q - 1\right) \ dx \right|= \left|\int_0^1 \frac{1}{n!} \frac{d^n}{d x^n} x^n (1-ax)^n\left( \sin(\pi q x) a_q - 1\right) \ dx\right|$$

$$= \left|\frac{1}{a^{n+1}n!} \int_{(0,1)\cup(1,a)} \frac{d^n}{d x^n} x^n (1-x)^n\left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right) \ dx\right| $$
$$\leq \left|\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{1}{n!a^{n+1}}\int_1^a \frac{d^n}{d x^n} x^n (1-x)^n\left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right) \ dx\right| $$

Let $$S_n = \int_1^a \left( \sin\left(\frac{\pi q x}{a}\right) a_q - 1\right)\frac{d^n}{d x^n} x^n (1-x)^n \ dx$$

So that we have
$$ = \left|\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{S_n}{n!a^{n+1}}\right|$$

Now, observing the bound in question, applying Theorem 4, and letting $A = C - \gamma + o(1)$, we have
$$\left| (n+q+2)!_\mathbb{P} (n+1) I_n \right|<\left|e^{An} e^{q+1} n^n \left(1+\frac{q+1}{n}\right)^n \left(1+\frac{q+1}{n}\right)^{q+1}n^{q+1}(n+1)\left(\left(\frac{\pi q}{4a^2}\right)^n \frac{a_q}{n! a}+\frac{S_n}{n!a^{n+1}}\right) \right| $$

If we ignore the $S_n$ term, we have that

$$\left| e^{q+1} \frac{n^n}{e^n n!} \left(1+\frac{q+1}{n}\right)^n \left(1+\frac{q+1}{n}\right)^{q+1}\frac{n^{q+1}(n+1)}{b^n}\left(\frac{e^{A+1}\pi bq}{4a^2}\right)^n \frac{a_q}{a} \right|$$

where $b > 1 $. If we consider $a$ such that $ a^2 > \frac{e^{A+1}\pi bq}{4}$, and applying Stirling‘s approximation to the left-most term (-ish), for large $n$, then the whole expression above tends to $0$. Now, it is left to consider the $S_n$ term, though I have a bad feeling about it. :/

来源:https://mathoverflow.net/questions/226875/proving-the-irrationality-of-pi-e-and-pi-e

原文地址:https://www.cnblogs.com/Eufisky/p/9941993.html

时间: 2024-08-15 01:37:42

Pi和e的积分的相关文章

simulink pi的方法产生锁相环

pi方法就是比例积分方法,关于pi方法介绍参考http://www.elecfans.com/dianzichangshi/20120909287851.html 锁相环pi方法原理参考http://wenku.baidu.com/view/86b9586fa76e58fafab003b7.html 关于系数的确定方法参考http://wenku.baidu.com/view/029d23425a8102d277a22f69.html 这次设计遇到了点麻烦,原因就在于从double型往定点型数据

CSDN markdown 编辑器 第四篇 LaTex语法

Latex是为了写数学公式的.嗯-但实际这种语言的作用是为了排版的.数学公式只是他的附加属性. 但是markdown引入这个完全是为了写公式.其他的Latex语法不支持. CSDN markdown语法支持的latex,分为两类 - 行内公式: $\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N$ 这是行内公式: Γ(n)=(n?1)!?n∈N 块级公式: $$ x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ 这个是块

灰度图像--频域滤波 傅里叶变换之离散时间傅里叶变换(DTFT)

学习DIP第22天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意........ 开篇废话 本来是不想写DTFT的,原因1,与前面傅里叶变换(FT)推导过程相似,原因2,在图像处理中DTFT应用不是很广泛,但后来想想还是写出来,原因1,不写出来我觉得心里不踏实,原因2,DTFT是DFT的近亲,不写的话家族不完整,下一篇写DFT,其实写到这个阶段,要写的东西就

高数学习-----无穷级数

计算a0: 如果求出来的an的表达式中n=0无意思,那么就要通过a0原始的计算方法((1/pi)*fx在-pi到pi内对x积分.): 不仅仅是a0,如果a1,b1在n=1,没有意思,也只有重新算(bn的计算公式,吧n=1带进去) 要注意:傅里叶展开式a0前有个系数0.5,且n是从1开始的 傅里叶展开的时候:不连续点药0.5(f++f-) 原文地址:https://www.cnblogs.com/confusion/p/9215262.html

【信号与系统】05 - 滤波、采样和通信

本篇将举三个重要的理论或领域,以展示之前信号理论的应用和意义.其中滤波理论和通信系统是非常大的应用领域,这里仅对基础的概念和方法做个介绍,以作入门之用. 1. 滤波系统 1.1 滤波器 在系统函数的性质中,我们看到信号在时域上的微分.积分.卷积等复杂运算,在频域都变成了代数运算.这说明分析和使用信号的频域,有其天然的优势,也会带来更广泛的应用.当然,频域的操作最终都体现在时域上,注意讨论其相互关系和平衡,有时也是必需的.滤波系统主要就是以信号的频域为操作对象,具体来说就是调整不同基波的波幅.相位

[BZOJ 1502][NOI2005]月下柠檬树(自适应Simpson积分)

Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看到在月光的照射下柠檬树投在地面上的影子是如此的清晰,马上想到了一个问题:树影的面积是多大呢? 李哲知道,直接测量面积是很难的,他想用几何的方法算,因为他对这棵柠檬树的形状了解得非常清楚,而且想好了简化的方法. 李哲将整棵柠檬树分成了 n 层,由下向上依次将层编号为 1,2,...,n.从第

【微积分】 04 - 一元积分

1. 不定积分 1.1 原函数和不定积分 前面的微分学讨论了导数对函数局部值的影响,现在开始就来看看整体的导函数能确定怎样的函数?换句话说,已知导函数的情况下,能否确定函数本身.对于不是处处有定义的导函数,为了简单起见,可以把它拆分成多个区间讨论.为此,对于区间\(I\)上处处有定义的导函数\(f(x)\),如果存在函数满足\(F'(x)=f(x)\),那么\(F(x)\)称为\(f(x)\)的原函数. 前面我们已经知道,区间上导函数相同的函数之间只相差一个常数,从而如果原函数\(F(x)\)存

ZOJ 3898 - Stean 积分

有一个陶罐,陶罐是由函数Y=2+cosX,截取x=Z1到x=Z2段后,形成的旋转体,陶罐只有底x=Z1,没有盖子. 问陶罐能乘多少的水(体积),以及它的表面积 体积还是比较好求的,直接用旋转体体积公式,pi*∫[z1,z2](2+cosX)2dX=  pi* ( 4sinX+sin2X/4+9X/2 | [z1,z2] ) 比较难求的是表面积,套用旋转体侧面积公式,2pi*∫[z1,z2](2+cosX)*sqrt(1+sin2X)dX 然而这个积分相当难求(好像是第二类椭圆积分),我们需要用辛

复分析复习5——Cauchy积分理论1

复值函数的积分是这样定义的.设有向曲线$\gamma:z=z(t),t\in[\alpha,\beta]$,并且$a=z(\alpha)$为起点,$b=z(\beta)$为终点.现沿着$\gamma$方向任取分点 \[a=a_{0},a_{1},\cdots,a_{n}=b\] 考虑和式 $$S_{n}=\sum_{i=1}^{n}f(\xi_{k})\Delta_{k},\xi_{k}\in[a_{k-1},a_{k}]$$ 当分点无限增多,而 $$\max\{\Delta_{k}\}\to0