【火炉炼AI】机器学习048-Harris检测图像角点

【火炉炼AI】机器学习048-Harris检测图像角点

(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )

角点检测算法大致有三类:基于灰度图像的角点检测,基于二值图像的角点检测,基于轮廓曲线的角点检测。基于灰度图像的角点检测又可分为基于梯度、基于模板和基于模板梯度组合3类方法,其中基于模板的方法主要考虑像素领域点的灰度变化,即图像亮度的变化,将与邻点亮度对比足够大的点定义为角点。常见的基于模板的角点检测算法有Kitchen-Rosenfeld角点检测算法,Harris角点检测算法、KLT角点检测算法及SUSAN角点检测算法。

1. Harris角点检测器

Harris角点检测主要经过以下步骤:

1,对图像进行高斯滤波

2,对每个像素,估计其垂直方向的梯度大小值,使用近似于导数的核做两次一维卷积。

3,对每一像素核给定的邻域窗口:计算局部结构矩阵和响应函数。

4,选取响应函数的一个阈值,以选择最佳候选角点并完成非极大值抑制。

关于Harris角点检测器的具体算法,可以参考这篇博文:harris角点检测器

下面我们来一步一步的使用Harris来检测图像中的角点

# Harris 角点检测器
img_gray = np.float32(gray) # Harris角点检测器需要float型数据
img_harris = cv2.cornerHarris(img_gray, 7, 5, 0.04) # 使用角点检测
plt.imshow(img_harris,cmap=‘gray‘) 

上面使用cv2.cornerHarris()函数检测到了图片中的角点,但是从图中可以看出,也检测出了很多边缘线条,故而我们要想办法去掉这些边缘线条而保留角点。

# 为了图像更加平滑,使用膨胀来将图像边缘减小,使得角点更突出
img_harris = cv2.dilate(img_harris, None)
plt.imshow(img_harris,cmap=‘gray‘)

从图片中可以看出,经过膨胀操作之后,边缘线条的宽度变小,而角点几乎不变。

但是我们要确定一个角点定义方法,此处我们定义像素值为最大值的1%以上为角点,从代码中可以看出:

# 确定角点的方法:此处我们定义角点为:其像素值为最大值的1%以上为角点,如下:
is_corner=img_harris > 0.01 * img_harris.max()
plt.imshow(is_corner,cmap=‘gray‘) # 将角点绘制出来看一下

上面的二值化图可以很明显的判断出哪些是角点,那么将这些角点绘制到原图中是怎么样了?

img[is_corner]=[0, 0, 255] # 用红色标注这些角点
img2=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
plt.imshow(img2)

可以从图中看出,角点检测的还是比较准确的。

########################小**********结###############################

1,角点的检测有一个难点在于cv2.cornerHarris的参数的选择,这个可能要多次尝试看效果。

2,本项目检测的角点比较准确,有一个重要原因是图片的背景是纯白,背景颜色简单,图片物体前景只是一个箱子,角点非常明显,故而检测比较容易,在其他很多情况下,可能难以简单的获得比较满意的结果。

#################################################################

注:本部分代码已经全部上传到(我的github)上,欢迎下载。

参考资料:

1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译

原文地址:https://www.cnblogs.com/RayDean/p/9830514.html

时间: 2024-11-05 19:01:46

【火炉炼AI】机器学习048-Harris检测图像角点的相关文章

【火炉炼AI】机器学习046-图像边缘的检测方法

[火炉炼AI]机器学习046-图像边缘的检测方法 (本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 ) 图像中各种形状的检测时计算机视觉领域中非常常见的技术之一,特别是图像中直线的检测,圆的检测,图像边缘的检测等,下面我们来研究一下如何快速检测图像边缘. 边缘是不同区域的分界线,是周围(局部)像素有显著变化的像素的集合,有幅值与方向两个属性.这个不是绝对的定义,主要记住边缘是局部特征以及周围

【火炉炼AI】机器学习050-提取图像的Star特征

[火炉炼AI]机器学习050-提取图像的Star特征 (本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 ) 对于图像的特征点,前面我们讨论过边缘检测方法,Harris角点检测算法等,这些检测算法检测的都是图像的轮廓边缘,而不是内部细节,如果要进一步提取图像内部细节方面的特征,需要用到SIFT特征提取器和Star特征提取器.上一篇我们讲解了SIFT特征提取器,下面我们来介绍Star特征提取器.

【火炉炼AI】机器学习007-用随机森林构建共享单车需求预测模型

[火炉炼AI]机器学习007-用随机森林构建共享单车需求预测模型 (本文所使用的Python库和版本号: Python 3.5, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 ) 共享单车是最近几年才发展起来的一种便民交通工具,基本上是我等屌丝上班,下班,相亲,泡妞必备神器.本项目拟使用随机森林回归器构建共享单车需求预测模型,从而查看各种不同的条件下,共享单车的需求量. 1. 准备数据集 本次使用的数据集来源于加利福尼亚大学欧文分校(UCI)大学的公

【火炉炼AI】机器学习006-用决策树回归器构建房价评估模型

[火炉炼AI]机器学习006-用决策树回归器构建房价评估模型 (本文所使用的Python库和版本号: Python 3.5, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 ) 最近几十年,房价一直是中国老百姓心中永远的痛,有人说,中国房价就像女人的无肩带文胸,一半人在疑惑:是什么支撑了它?另一半人在等待:什么时候掉下去? 而女人,永不可能让它掉下来.就算快掉下来了,提一提还是又上去了..... 虽然我们不能预测中国房价什么时候崩盘,但是却可以用机器学

【火炉炼AI】机器学习019-项目案例:使用SVM回归器估算交通流量

[火炉炼AI]机器学习019-项目案例:使用SVM回归器估算交通流量 (本文所使用的Python库和版本号: Python 3.5, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 ) 我们都知道,SVM是一个很好地分类器,不仅适用于线性分类模型,而且还适用于非线性模型,但是,在另一方面,SVM不仅可以用于解决分类问题,还可以用于解决回归问题. 本项目打算使用SVM回归器来估算交通流量,所使用的方法和过程与我的上一篇文章[火炉炼AI]机器学习018-项

【火炉炼AI】机器学习017-使用GridSearch搜索最佳参数组合

[火炉炼AI]机器学习017-使用GridSearch搜索最佳参数组合 (本文所使用的Python库和版本号: Python 3.5, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 ) 在前面的文章([火炉炼AI]机器学习012-用随机森林构建汽车评估模型及模型的优化提升方法),我们使用了验证曲线来优化模型的超参数,但是使用验证曲线难以同时优化多个参数的取值,只能一个参数一个参数的优化,从而获取每个参数的最优值,但是有时候,一个非常优秀的模型,可能A

【火炉炼AI】机器学习018-项目案例:根据大楼进出人数预测是否举办活动

[火炉炼AI]机器学习018-项目案例:根据大楼进出人数预测是否举办活动 (本文所使用的Python库和版本号: Python 3.5, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 ) 我们经常看到办公大楼中人来人往,进进出出,在平时没有什么活动的时候,进出大楼的人数会非常少,而一旦举办有大型商业活动,则人山人海,熙熙攘攘,所以很明显,大楼进出的人数和大楼是否举办活动有很明显的关联,那么,是否可以构建一个模型,通过大楼进出人数来预测该大楼是否在举办

【火炉炼AI】机器学习042-NLP文本的主题建模

[火炉炼AI]机器学习042-NLP文本的主题建模 (本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, NLTK 3.3) 文本的主题建模时用NLP来识别文本文档中隐藏的某种模式的过程,可以发现该文档的隐藏主题,以便对文档进行分析.主题建模的实现过程是,识别出某文本文档中最有意义,最能表征主题的词来实现主题分类,即寻找文本文档中的关键词,通过关键词就可以识别出某文档的隐藏主题. 1. 准备数

【火炉炼AI】深度学习005-简单几行Keras代码解决二分类问题

[火炉炼AI]深度学习005-简单几行Keras代码解决二分类问题 (本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, Keras 2.1.6, Tensorflow 1.9.0) 很多文章和教材都是用MNIST数据集作为深度学习届的"Hello World"程序,但是这个数据集有一个很大的特点:它是一个典型的多分类问题(一共有10个分类),在我们刚刚开始接触深度学习时,我倒是觉得