BP算法详解

说到神经网络,大家看到这个图应该不陌生:

这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,…,xn},输出也是一堆数据{y1,y2,y3,…,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。

  本文直接举一个例子,带入数值演示反向传播法的过程,其实也很简单,感兴趣的同学可以自己推导下试试:)(注:本文假设你已经懂得基本的神经网络构成,如果完全不懂,可以参考Poll写的笔记:[Mechine Learning & Algorithm] 神经网络基础

  假设,你有这样一个网络层:

  第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。

  现在对他们赋上初值,如下图:

  其中,输入数据  i1=0.05,i2=0.10;

     输出数据 o1=0.01,o2=0.99;

     初始权重  w1=0.15,w2=0.20,w3=0.25,w4=0.30;

           w5=0.40,w6=0.45,w7=0.50,w8=0.55

目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。

Step 1 前向传播

  1.输入层—->隐含层:

  计算神经元h1的输入加权和:

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

同理,可计算出神经元h2的输出o2:

  

 2.隐含层—->输出层:

  计算输出层神经元o1和o2的值: 

这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

Step 2 反向传播

1.计算总误差

总误差:(square error)

但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:

2.隐含层—->输出层的权值更新:

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)

下面的图可以更直观的看清楚误差是怎样反向传播的:

现在我们来分别计算每个式子的值:

计算

计算

(这一步实际上就是对sigmoid函数求导,比较简单,可以自己推导一下)

计算

最后三者相乘:

这样我们就计算出整体误差E(total)对w5的偏导值。

回过头来再看看上面的公式,我们发现:

为了表达方便,用来表示输出层的误差:

因此,整体误差E(total)对w5的偏导公式可以写成:

如果输出层误差计为负的话,也可以写成:

最后我们来更新w5的值:

(其中,是学习速率,这里我们取0.5)

同理,可更新w6,w7,w8:

3.隐含层—->隐含层的权值更新:

     方法其实与上面说的差不多,但是有个地方需要变一下,在上文计算总误差对w5的偏导时,是从out(o1)—->net(o1)—->w5,但是在隐含层之间的权值更新时,是out(h1)—->net(h1)—->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。

计算

先计算

同理,计算出:

          

两者相加得到总值:

再计算

再计算

最后,三者相乘:

为了简化公式,用sigma(h1)表示隐含层单元h1的误差:

最后,更新w1的权值:

同理,额可更新w2,w3,w4的权值:

这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,在这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。迭代10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证明效果还是不错的。

BP算法改进

BP算法易形成局部极小而得不到全局最优,训练次数多使得学习效率低,存在收敛速度慢等问题。

传统的BP算法改进主要有两类:

启发式算法:如附加动量法,自适应算法。

数值优化算法:如共轭梯度法、牛顿迭代法等。

1,附加动量项

这是一种广泛用于加速梯度下降法收敛的优化方法。附加动量法面临学习率的选取的困难,进而产生收敛速度与收敛性之间的矛盾。

核心思想:在梯度下降搜索时,若当前梯度下降与之前梯度下降方向相同,则加速搜索,反之则减速搜索。

标准BP算法的参数更新项为:

?ω(t)= ηg(t)

式中,?ω(t)为第t次迭代的参数调整量,η为学习率,g(t)为第t次迭代所计算出的梯度。

添加动量项之后,基于梯度下降的参数更新为:

?ωt= ηgt+α?ωt-1

式中α被称为动量系数,一般α∈(0,1),α?ω(t-1)代表之前梯度下降的方向和大小信息对当前梯度下降的调整作用。

2,自适应学习率

核心思想:自适应改变学习率,使其根据环境变化增大或减小。

ηt=σ(t)η(t-1)

上式中,σ(t)为第 t 次迭代时的自适应学习速率因子。

3,引入陡度因子

核心思想:如果在调整进入平坦区后,设法压缩神经元的净输入,使其输出退出激活函数的不饱和区,就可以改变误差函数的形状,从而使调整脱离平坦区。

在原激活函数中引入一个陡度因子λ

  1  #coding:utf-8
  2    import random
  3    import math
  4
  5   #
  6   #   参数解释:
  7   #   "pd_" :偏导的前缀
  8   #   "d_" :导数的前缀
  9   #   "w_ho" :隐含层到输出层的权重系数索引
 10   #   "w_ih" :输入层到隐含层的权重系数的索引
 11
 12   class NeuralNetwork:
 13       LEARNING_RATE = 0.5
 14
 15       def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights =None,hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
 16           self.num_inputs = num_inputs
 17
 18           self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
 19           self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
 20
 21           self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
 22           self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
 23
 24       def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
 25           weight_num = 0
 26           for h in range(len(self.hidden_layer.neurons)):
 27               for i in range(self.num_inputs):
 28                   if not hidden_layer_weights:
 29                       self.hidden_layer.neurons[h].weights.append(random.random())
 30                   else:
 31                       self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
 32                   weight_num += 1
 33
 34       def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
 35           weight_num = 0
 36           for o in range(len(self.output_layer.neurons)):
 37               for h in range(len(self.hidden_layer.neurons)):
 38                   if not output_layer_weights:
 39                       self.output_layer.neurons[o].weights.append(random.random())
 40                   else:
 41                       self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
 42                   weight_num += 1
 43
 44       def inspect(self):
 45           print(‘------‘)
 46           print(‘* Inputs: {}‘.format(self.num_inputs))
 47           print(‘------‘)
 48           print(‘Hidden Layer‘)
 49           self.hidden_layer.inspect()
 50           print(‘------‘)
 51           print(‘* Output Layer‘)
 52           self.output_layer.inspect()
 53           print(‘------‘)
 54
 55       def feed_forward(self, inputs):
 56           hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
 57           return self.output_layer.feed_forward(hidden_layer_outputs)
 58
 59       def train(self, training_inputs, training_outputs):
 60           self.feed_forward(training_inputs)
 61
 62           # 1. 输出神经元的值
 63           pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
 64           for o in range(len(self.output_layer.neurons)):
 65
 66               # ?E/?z?
 67               pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
 68
 69           # 2. 隐含层神经元的值
 70           pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
 71         for h in range(len(self.hidden_layer.neurons)):
 72
 73               # dE/dy? = Σ ?E/?z? * ?z/?y? = Σ ?E/?z? * w??
 74               d_error_wrt_hidden_neuron_output = 0
 75               for o in range(len(self.output_layer.neurons)):
 76                   d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
 77
 78               # ?E/?z? = dE/dy? * ?z?/?
 79               pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()
 80
 81           # 3. 更新输出层权重系数
 82          for o in range(len(self.output_layer.neurons)):
 83              for w_ho in range(len(self.output_layer.neurons[o].weights)):
 84
 85                   # ?E?/?w?? = ?E/?z? * ?z?/?w??
 86                   pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
 87
 88                   # Δw = α * ?E?/?w?
 89                   self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
 90
 91          # 4. 更新隐含层的权重系数
 92           for h in range(len(self.hidden_layer.neurons)):
 93               for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
 94
 95                   # ?E?/?w? = ?E/?z? * ?z?/?w?
 96                   pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
 97
 98                   # Δw = α * ?E?/?w?
 99                   self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
100
101      def calculate_total_error(self, training_sets):
102          total_error = 0
103          for t in range(len(training_sets)):
104              training_inputs, training_outputs = training_sets[t]
105              self.feed_forward(training_inputs)
106              for o in range(len(training_outputs)):
107                  total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
108          return total_error
109
110  class NeuronLayer:
111      def __init__(self, num_neurons, bias):
112
113          # 同一层的神经元共享一个截距项b
114          self.bias = bias if bias else random.random()
115
116          self.neurons = []
117          for i in range(num_neurons):
118              self.neurons.append(Neuron(self.bias))
119
120      def inspect(self):
121          print(‘Neurons:‘, len(self.neurons))
122          for n in range(len(self.neurons)):
123              print(‘ Neuron‘, n)
124              for w in range(len(self.neurons[n].weights)):
125                  print(‘  Weight:‘, self.neurons[n].weights[w])
126              print(‘  Bias:‘, self.bias)
127
128      def feed_forward(self, inputs):
129          outputs = []
130          for neuron in self.neurons:
131              outputs.append(neuron.calculate_output(inputs))
132          return outputs
133
134      def get_outputs(self):
135          outputs = []
136          for neuron in self.neurons:
137              outputs.append(neuron.output)
138          return outputs
139
140  class Neuron:
141      def __init__(self, bias):
142          self.bias = bias
143          self.weights = []
144
145      def calculate_output(self, inputs):
146          self.inputs = inputs
147          self.output = self.squash(self.calculate_total_net_input())
148         return self.output
149
150      def calculate_total_net_input(self):
151          total = 0
152          for i in range(len(self.inputs)):
153              total += self.inputs[i] * self.weights[i]
154          return total + self.bias
155
156      # 激活函数sigmoid
157      def squash(self, total_net_input):
158          return 1 / (1 + math.exp(-total_net_input))
159
160
161      def calculate_pd_error_wrt_total_net_input(self, target_output):
162          return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();
163
164      # 每一个神经元的误差是由平方差公式计算的
165      def calculate_error(self, target_output):
166          return 0.5 * (target_output - self.output) ** 2
167
168
169      def calculate_pd_error_wrt_output(self, target_output):
170          return -(target_output - self.output)
171
172
173      def calculate_pd_total_net_input_wrt_input(self):
174          return self.output * (1 - self.output)
175
176
177      def calculate_pd_total_net_input_wrt_weight(self, index):
178          return self.inputs[index]
179
180
181  # 文中的例子:
182
183 nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3],hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55],output_layer_bias=0.6)
184   for i in range(10000):
185      nn.train([0.05, 0.1], [0.01, 0.09])
186      print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))
187
188  #另外一个例子,可以把上面的例子注释掉再运行一下:
189
190  # training_sets = [
191  #     [[0, 0], [0]],
192  #     [[0, 1], [1]],
193  #     [[1, 0], [1]],
194  #     [[1, 1], [0]]
195  # ]
196
197  # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
198  # for i in range(10000):
199  #     training_inputs, training_outputs = random.choice(training_sets)
200  #     nn.train(training_inputs, training_outputs)
201  #     print(i, nn.calculate_total_error(training_sets))

原文地址:https://www.cnblogs.com/duanhx/p/9655213.html

时间: 2024-11-08 23:09:52

BP算法详解的相关文章

EM算法(3):EM算法详解

目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法详解

[转] KMP算法详解

转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串).比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串.

[搜索]波特词干(Porter Streamming)提取算法详解(3)

 接上 [搜索]波特词干(Porter Streamming)提取算法详解(2) 下面分为5大步骤来使用前面提到的替换条件来进行词干提取. 左边是规则,右边是提取成功或者失败的例子(用小写字母表示). 步骤1 SSES -> SS                   caresses  ->  caress IES  -> I                          ponies    ->  poni ties      ->  ti SS   -> S

KMP算法详解(图示+代码)

算法过程非常绕,不要企图一次就能看明白,多尝试就会明白一些.下面试图用比较直观的方法解释这个算法,对KMP算法的解释如下: 1. 首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较.因为B与A不匹配,所以搜索词后移一位. 2. 因为B与A不匹配,搜索词再往后移. 3. 就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止. 4. 接着比较字符串和搜索词的下一个字符,还是相同. 5. 直到字

安全体系(三)——SHA1算法详解

本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保证传输信息的安全,除了对信息加密外,还需要对信息进行认证.认证的目的有两:一是验证信息的发送者是合法的,二是验证信息的完整性.Hash函数就是进行信息认证的一种有效手段. 1.Hash函数和消息完整性 Hash函数也称为杂凑函数或散列函数,函数输入为一可变长度x,输出为一固定长度串,该串被称为输入x

php 二分查找法算法详解

一.概念:二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表.重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功. 二.代

【转】AC算法详解

原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和Margaret J.Corasick于1974年提出(与KMP算法同年)的一个经典的多模式匹配算法,可以保证对于给定的长度为n的文本,和模式集合P{p1,p2,...pm},在O(n)时间复杂度内,找到文本中的所有目标模式,而与模式集合的规模m无关.正如KMP算法在单模式匹配方面的突出贡献一样,AC算法对于

支持向量机(SVM)(五)-- SMO算法详解

一.我们先回顾下SVM问题. A.线性可分问题 1.SVM基本原理: SVM使用一种非线性映射,把原训练            数据映射到较高的维.在新的维上,搜索最佳分离超平面,两个类的数据总可以被超平面分开. 2.问题的提出: 3.如何选取最优的划分直线f(x)呢? 4.求解:凸二次规划 建立拉格朗日函数: 求偏导数: B.线性不可分问题 1.核函数 如下图:横轴上端点a和b之间红色部分里的所有点定为正类,两边的黑色部分里的点定为负类. 设: g(x)转化为f(y)=<a,y> g(x)=

Manacher算法详解

[转] Manacher算法详解 转载自: http://blog.csdn.net/dyx404514/article/details/42061017 Manacher算法 算法总结第三弹 manacher算法,前面讲了两个字符串相算法——kmp和拓展kmp,这次来还是来总结一个字符串算法,manacher算法,我习惯叫他 “马拉车”算法. 相对于前面介绍的两个算法,Manacher算法的应用范围要狭窄得多,但是它的思想和拓展kmp算法有很多共通支出,所以在这里介绍一下.Manacher算法