pandas中Loc vs. iloc vs. ix vs. at vs. iat?

loc: only work on index
iloc: work on position
ix: You can get data from dataframe without it being in the index
at: get scalar values. It‘s a very fast loc
iat: Get scalar values. It‘s a very fast iloc

时间: 2024-10-01 10:34:23

pandas中Loc vs. iloc vs. ix vs. at vs. iat?的相关文章

pandas (loc、iloc、ix)的区别

loc:通过行标签索引数据 iloc:通过行号索引行数据 ix:通过行标签或行号索引数据(基于loc和iloc的混合) 1.使用loc.iloc.ix索引第一行数据: (1) loc (2) iloc (3) ix

loc、iloc、ix 区别

loc--通过行标签索引行数据 iloc--通过行号索引行数据 ix--通过行标签或者行号索引行数据(基于loc和iloc 的混合) 同理,索引列数据也是如此! 举例说明: 1.分别使用loc.iloc.ix 索引第一行的数据: (1)loc import pandas as pd data=[[1,2,3],[4,5,6]] index=['a','b']#行号 columns=['c','d','e']#列号 df=pd.DataFrame(data,index=index,columns=

pandas的loc与iloc

1. loc是用标签(也就是行名和列名)来查找,标签默认是数字,但也可以通过index参数指定为字符型等其他的类型. 格式是df.loc[行名,列名],如果列标签没有给出,则默认为查找指定行标签的所有列. 例如: 1.1 创建一个DataFrame,不指定各行的名称(或者说标签),pandas会默认通过数字编号,将各行命名为0,1,2,... 1.2 df.loc[行名],不指定列名,则查找输出该行名的所有列: 1.3 df.loc[行名,列名],则查找行名为0,列名为'id'的值: 1.4 d

python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix

先手工生出一个数据框吧 [python] view plain copy import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用 df [ 'a' ] 就能选取出一整列数据.如果你知道column names 和index,且两者都很

关于python中loc和iloc方法

pandas以类似字典的方式来获取某一列的值 import pandas as pd import numpy as np table = pd.DataFrame(np.zeros((4,2)), index=['a','b','c','d'], columns=['left', 'right']) print(table) 得到: 如果我们此时需要得到table列的值 例如:table['left'] 即可得到: 如果我们对于行感兴趣,这时候有两种方法,即 iloc 和 loc 方法 loc

pandas 定位 loc,iloc,ix

In [114]: df Out[114]: A B C D 2018-06-30 0.318501 0.613145 0.485612 0.918663 2018-07-31 0.614796 0.711491 0.503203 0.170298 2018-08-31 0.530939 0.173830 0.264867 0.181273 2018-09-30 0.009428 0.622133 0.933908 0.813617 2018-10-31 0.126368 0.981736 0.

pandas中的series数据类型

import pandas as pd import numpy as np import names ''' 写在前面的话: 1.series与array类型的不同之处为series有索引,而另一个没有;series中的数据必须是一维的,而array类型不一定 2.可以把series看成一个定长的有序字典,可以通过shape,index,values等得到series的属性 ''' # 1.series的创建 ''' (1)由列表或numpy数组创建 默认索引为0到N-1的整数型索引,如s1;

pandas中DataFrame

python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

Pandas中数据的处理

有两种丢失数据 --None --np.nan(NaN) None是python自带的,其类型为python object.因此,None不能参与到任何计算中 Object类型的运算比int类型的运算慢的多 计算不同数据类型求和时间 %timeit np.arange(1e5,dtype=xxx).sum() %timeit是指python表达式或语句的执行时间 Pandas中的none与np.nan都视作np.nan 数据清洗 df.loc[index,column] ------>元素索引,