文本比较算法Ⅱ——Needleman/Wunsch算法

在“文本比较算法Ⅰ——LD算法”中介绍了基于编辑距离的文本比较算法——LD算法。

  本文介绍基于最长公共子串的文本比较算法——Needleman/Wunsch算法。

  还是以实例说明:字符串A=kitten,字符串B=sitting

  那他们的最长公共子串为ittn(注:最长公共子串不需要连续出现,但一定是出现的顺序一致),最长公共子串长度为4。

  

  定义:

  LCS(A,B)表示字符串A和字符串B的最长公共子串的长度。很显然,LSC(A,B)=0表示两个字符串没有公共部分。

  Rev(A)表示反转字符串A

  Len(A)表示字符串A的长度

  A+B表示连接字符串A和字符串B

  性质:

  LCS(A,A)=Len(A)

  LCS(A,"")=0

  LCS(A,B)=LCS(B,A)

  0≤LCS(A,B)≤Min(Len(A),Len(B))

  LCS(A,B)=LCS(Rev(A),Rev(B))

  LCS(A+C,B+C)=LCS(A,B)+Len(C)

  LCS(A+B,A+C)=Len(A)+LCS(B,C)

  LCS(A,B)≥LCS(A,C)+LCS(B,C)

  LCS(A+C,B)≥LCS(A,B)+LCS(B,C)

  为了讲解计算LCS(A,B),特给予以下几个定义

  A=a1a2……aN,表示A是由a1a2……aN这N个字符组成,Len(A)=N

  B=b1b2……bM,表示B是由b1b2……bM这M个字符组成,Len(B)=M

  定义LCS(i,j)=LCS(a1a2……ai,b1b2……bj),其中0≤i≤N,0≤j≤M

  故:  LCS(N,M)=LCS(A,B)

      LCS(0,0)=0

      LCS(0,j)=0

      LCS(i,0)=0

  对于1≤i≤N,1≤j≤M,有公式一

  若ai=bj,则LCS(i,j)=LCS(i-1,j-1)+1

  若ai≠bj,则LCS(i,j)=Max(LCS(i-1,j-1),LCS(i-1,j),LCS(i,j-1))

  计算LCS(A,B)的算法有很多,下面介绍的Needleman/Wunsch算法是其中的一种。和LD算法类似,Needleman/Wunsch算法用的都是动态规划的思想。在Needleman/Wunsch算法中还设定了一个权值,用以区分三种操作(插入、删除、更改)的优先级。在下面的算法中,认为三种操作的优先级都一样。故权值默认为1。

  

  举例说明:A=GGATCGA,B=GAATTCAGTTA,计算LCS(A,B)

  第一步:初始化LCS矩阵

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0                      
G 0                      
A 0                      
T 0                      
C 0                      
G 0                      
A 0                      

  第二步:利用公式一,计算矩阵的第一行

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0                      
A 0                      
T 0                      
C 0                      
G 0                      
A 0                      

  第三步:利用公式一,计算矩阵的其余各行

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

  则,LCS(A,B)=LCS(7,11)=6

  可以看出,Needleman/Wunsch算法实际上和LD算法是非常接近的。故他们的时间复杂度和空间复杂度也一样。时间复杂度为O(MN),空间复杂度为O(MN)。空间复杂度经过优化,可以优化到O(M),但是一旦优化就丧失了计算匹配字串的机会了。由于代码和LD算法几乎一样。这里就不再贴代码了。

  

  还是以上面为例A=GGATCGA,B=GAATTCAGTTA,LCS(A,B)=6

  他们的匹配为:

    A:GGA_TC_G__A

    B:GAATTCAGTTA

  如上面所示,蓝色表示完全匹配,黑色表示编辑操作,_表示插入字符或者是删除字符操作。如上面所示,蓝色字符有6个,表示最长公共子串长度为6。

  利用上面的Needleman/Wunsch算法矩阵,通过回溯,能找到匹配字串

  第一步:定位在矩阵的右下角

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

  第二步:回溯单元格,至矩阵的左上角

    若ai=bj,则回溯到左上角单元格

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

    若ai≠bj,回溯到左上角、上边、左边中值最大的单元格,若有相同最大值的单元格,优先级按照左上角、上边、左边的顺序

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

    若当前单元格是在矩阵的第一行,则回溯至左边的单元格

    若当前单元格是在矩阵的第一列,则回溯至上边的单元格

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

    依照上面的回溯法则,回溯到矩阵的左上角

  第三步:根据回溯路径,写出匹配字串

    若回溯到左上角单元格,将ai添加到匹配字串A,将bj添加到匹配字串B

    若回溯到上边单元格,将ai添加到匹配字串A,将_添加到匹配字串B

    若回溯到左边单元格,将_添加到匹配字串A,将bj添加到匹配字串B

    搜索晚整个匹配路径,匹配字串也就完成了

  可以看出,LD算法和Needleman/Wunsch算法的回溯路径是一样的。这样找到的匹配字串也是一样的。

  不过,Needleman/Wunsch算法和LD算法一样,若要找出匹配字串,空间的复杂度就一定是O(MN),在文本比较长的时候,是极为耗用存储空间的。故若要计算出匹配字串,还得用其他的算法,留待后文介绍。

时间: 2024-10-13 11:57:16

文本比较算法Ⅱ——Needleman/Wunsch算法的相关文章

文本比较算法:Needleman/Wunsch算法

本文介绍基于最长公共子序列的文本比较算法--Needleman/Wunsch算法.还是以实例说明:字符串A=kitten,字符串B=sitting那他们的最长公共子序列为ittn(注:最长公共子序列不需要连续出现,但一定是出现的顺序一致),最长公共子序列长度为4. 和LD算法类似,Needleman/Wunsch算法用的都是动态规划的思想,两者十分相似. 举例说明:A=GGATCGA,B=GAATTCAGTTA,计算LCS(A,B). 第一步:初始化动态转移矩阵 Needleman/Wunsch

利用Needleman–Wunsch算法进行DNA序列全局比对

生物信息学原理作业第二弹:利用Needleman–Wunsch算法进行DNA序列全局比对. 具体原理:https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm. 贴上python代码: 1 # -*- coding: utf-8 -*- 2 """ 3 Created on Sat Nov 25 18:20:01 2017 4 5 @author: zxzhu 6 后需修改: 7 1.加命令行参数 8 2

Needleman–Wunsch 算法的代码实现

# -*- coding: utf-8 -*- """ :Author: huangsh :Date: 19-7-28 下午19:17 :Description: 使用bidu Needleman–Wunsch 算法来计算两条序列的最大相似得分 如果您对此算法不熟悉,可以去看看我写的一篇拙文:https://www.jianshu.com/p/002bbebcaaef """ from collections import namedtuple

条件随机场(CRF) - 4 - 学习方法和预测算法(维特比算法)

声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 学习方法 条件随机场模型实际上是定义在时序数据上的对数线性模型,其学习方法包括极大似然估计和正则化的极大

[数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现

聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记录)的集合,将这些对象划分为多个组或者“聚簇”,从而使同组内的对象间比较相似而不同组对象间差异比较大:换言之,聚类算法就是将相似的对象放到同一个聚簇中,而将不相似的对象放到不同的聚簇中.由于在聚类过程中不使用到类别标签,所以相似性的概念要基于对象的属性进行定义.应用不同则相似性规则和聚类算法一般不太

【强连通分量】tarjan算法及kosaraju算法+例题

阅读前请确保自己知道强连通分量是什么,本文不做赘述. Tarjan算法 一.算法简介 Tarjan算法是一种由Robert Tarjan提出的求有向图强连通分量的时间复杂度为O(n)的算法. 首先我们要知道两个概念:时间戳(DFN),节点能追溯到的最早的栈中节点的时间戳(LOW).顾名思义,DFN就是在搜索中某一节点被遍历到的次序号(dfs_num),LOW就是某一节点在栈中能追溯到的最早的父亲节点的搜索次序号. Tarjan算法是基于深度优先搜索的算法.在搜索过程中把没有Tarjan过的点入栈

BF算法与KMP算法

BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的第二个字符和T的第一个字符,依次比较下去,直到得出最后的匹配结果. BF算法实现: 1 int BF(char S[],char T[],int pos) 2 {//c从第pos位开始搜索匹配 3 int i=pos,j=0; 4 while(S[i+j]!='\0'&&T[j]!='\0')

排序算法之归并算法

/* 本例拟在实现排序算法的归并算法,归并算法遵循分治法的思想 归并算法: 归并算法主要用来合并两个已经排好序的序列.用Merge(A,p,q,r)来实现合并, 其中A代表数组,A[p,q]和A[q+1,r]A的两个子数组,且两个数组都已经排好序,归并算法 就是将这两个子数组合并成一个排好序的数组并替代当前的数组A[p,r]. */ public class Merge { public static void main(String[] args) { int[] a = {1,2,3,4,5

最小生成树(prim算法,Kruskal算法)c++实现

1.生成树的概念 连通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成树. 生成树是连通图的极小连通子图.所谓极小是指:若在树中任意增加一条边,则将出现一个回路:若去掉一条边,将会使之变成非连通图. 生成树各边的权值总和称为生成树的权.权最小的生成树称为最小生成树. 2.最小生成树的性质用哲学的观点来说,每个事物都有自己特有的性质,那么图的最小生成树也是不例外的.按照生成树的定义,n 个顶点的连通网络的生成树有 n 个顶点.n-1 条边. 3.构造最小生成树,要解决以下两个问题