[HNOI2008]水平可见直线

Description

在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
    例如,对于直线:
    L1:y=x; L2:y=-x; L3:y=0
    则L1和L2是可见的,L3是被覆盖的.
    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

解题思路:

  这是一道几何水题,算法很简单,先按照斜率排序,依次处理每一条直线

联立 y-kx1-b1=0

   y-kx2-b2=0

求得两直线焦点横坐标,我们会发现由直线组成的凸包随K值递增,交点横左边也是递增的

所以用一个单调栈来维护直线集合,如果 交点(k,j)在交点(i,j)左边,则直线i一定被覆盖

所以将直线i 弹出栈,以此类推。

AC代码:

#include<cstdio>
#include<stack>
#include<algorithm>
#define eps 1e-8
#define Maxn 50001
using namespace std;
typedef double D;
class Node{
public:
int num;
D k,b;
};
stack<Node>Q;
Node t[Maxn],h[Maxn];
bool cmp(const Node A,const Node B){
return (A.k<B.k)||((A.k-B.k<eps)&&(A.b>B.b)); //problem 1
}
bool cmp2(const Node A,const Node B){
return A.num<B.num;
}
double public_node(Node A,Node B){
return (B.b-A.b)/(A.k-B.k);
}
bool Istrue(int i){
Node tmp=Q.top(),tmp2;
Q.pop();
if(!Q.empty())
tmp2=Q.top();
else
tmp2=tmp;
Q.push(tmp);
if(public_node(h[i],tmp2)<=public_node(tmp,tmp2))
return true;
return false;
}
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;++i)
scanf("%lf%lf",&h[i].k,&h[i].b),
h[i].num=i;
sort(h,h+n,cmp);
Q.push(h[0]);
for(int i=1;i<n;++i){
if((h[i].k-h[i-1].k)<eps)    // problem 2
continue;
while(Q.size()>1&&!Q.empty()&&Istrue(i))
Q.pop();
Q.push(h[i]);
}
int i=0;
while(!Q.empty()){
t[i++]=Q.top();
Q.pop();
}
sort(t,t+i,cmp2);
for(int j=0;j<i;++j)
printf("%d ",t[j].num+1);
}

注意情况 :

代码中注释的 P1 P2,切记不要将 Node 中的k,b写为整形 ,若写为浮点形则 逻辑关系上不可以使用等于

常识性的知识: 两个浮点数比较大小只能以做差的方式来进行比较。

时间: 2024-10-17 23:59:02

[HNOI2008]水平可见直线的相关文章

1007: [HNOI2008]水平可见直线[维护下凸壳]

1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2741[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给

BZOJ 1007: [HNOI2008]水平可见直线( 计算几何 )

按A从小到大排序然后用栈解决. -------------------------------------------------------------------- #include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 50009; struct L { int A, B, id; inline void Read(int p) { scanf("%d%d"

bzoj 1007 [HNOI2008]水平可见直线(单调栈)

1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0     则L1和L

BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何

1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0  

1007: [HNOI2008]水平可见直线

1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5995  Solved: 2276[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给

【BZOJ1007】[HNOI2008]水平可见直线 半平面交

[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000

BZOJ 1007: [HNOI2008]水平可见直线 几何

按斜率排序,斜率线相同的直线取截距最大的 一条直线能够被看到的条件是,与比它斜率小的交点在比它斜率大的交点的左侧 1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 4234  Solved: 1558 [Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则

bzoj 1007: [HNOI2008]水平可见直线(计算几何)

1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 5503  Solved: 2078 [Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是

bzoj1007: [HNOI2008]水平可见直线(单调栈)

1007: [HNOI2008]水平可见直线 题目:传送门 题解: 蒟蒻在bzoj上做的第一道计算几何 其实这道题并不难...(所以我A了) 仔细想想不难发现,其实我们只需要维护一个下凸的图形... 只有在这个图形上的直线才不会被覆盖,也就是可以被上帝直线看到的孩子 为什么呢...自己画个图模拟吧. 那么具体的做法我们就要采用单调栈啦! 把给出的直线按照斜率从小到大排序(如果斜率相同的话就按照b来排) 然后一个一个放入我们强大的单调栈中,在加入的同时我们当然还要进行维护: 如果栈顶的直线与新加直

【BZOJ 1007】 [HNOI2008]水平可见直线

Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可见的,L3是被覆盖的.    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入A