02_Pandas基本使用

1.Pandas读取数据

import pandas as pd
pd.read_csv(r‘D:\数据分析\02_Pandas\pandas\food_info.csv‘)

out:

---------------------------------------------------------------------------
OSError                                   Traceback (most recent call last)
<ipython-input-15-cc3e7efb5b57> in <module>()
      1 import pandas as pd
----> 2 pd.read_csv(r‘D:\数据分析\02_Pandas\pandas\food_info.csv‘)
...
pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source()

OSError: Initializing from file failed

使用read_csv()函数时,可能会报错如上。

显示以上错误,网上解答说可能是路径含有中文名,或者只能读取当前文件夹下的文件;

设置:engine=“python”解决问题!! 默认engine=“C”,使用C时速度较快,但是包含中文时出错。

 In:

# read_csv函数,读取数据

import pandas as pd

food_info = pd.read_csv(r‘D:\数据分析\02_Pandas\pandas\food_info.csv‘, engine=‘python‘)
# print(food_info)

# pandas读取文件后,数据类型为dataframe格式,
# numpy读取文件后的数据类型为array个数
print(type(food_info))  

# dataframe.dtypes 返回每列数据的类型;object是pandas中的字符型数据
# numpy中的dtype返回整个文件的数据类型,因此要求数据类型一致;不一致时自动类型转换
print(food_info.dtypes)

Out:

<class ‘pandas.core.frame.DataFrame‘>
NDB_No               int64
Shrt_Desc           object
...
FA_Mono_(g)        float64
FA_Poly_(g)        float64
Cholestrl_(mg)     float64
dtype: object

In:

# head(),tail()方法的使用

# print(food_info.head())  # 默认显示前5行
print(food_info.head(3))  # head()函数:读取数据的前3行
# food_info.tail(4)  # tail()函数:显示末尾4行
# print(food_info.columns)  # columns属性:返回所有列名
print(food_info.shape)  # shape属性:显示行列数

Out:

   NDB_No                 Shrt_Desc  Water_(g)  Energ_Kcal  Protein_(g)  0    1001          BUTTER WITH SALT      15.87         717         0.85
1    1002  BUTTER WHIPPED WITH SALT      15.87         717         0.85
2    1003      BUTTER OIL ANHYDROUS       0.24         876         0.28   

   Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  Fiber_TD_(g)  Sugar_Tot_(g)  0          81.11     2.11            0.06           0.0           0.06
1          81.11     2.11            0.06           0.0           0.06
2          99.48     0.00            0.00           0.0           0.00   

...

[3 rows x 36 columns]
(8618, 36)

2.Pandas索引与计算

In:

# loc与iloc索引取值

# print(food_info.loc[0])  # 通过loc方法,获取第一行数据的值
print(food_info.iloc[0])  # 通过iloc方法,同样获取结果
# print(food_info.loc[:3])  # 传入切片,获取若干行
# print(food_info.loc[[2, 3, 5]])  # 以列表的形式传入索引,获取索引对应的数据

Out:

NDB_No                         1001
Shrt_Desc          BUTTER WITH SALT
Water_(g)                     15.87
Energ_Kcal                      717
Protein_(g)                    0.85
...
Vit_K_(mcg)                       7
FA_Sat_(g)                   51.368
FA_Mono_(g)                  21.021
FA_Poly_(g)                   3.043
Cholestrl_(mg)                  215
Name: 0, dtype: object

In:

# 切片操作

# food_info.loc[3:6]  # 取出3,4,5,6,共四个样本
# food.info.iloc[3:6]  # 只能取到3,4,5共三个样本

index = [2, 3, 5]
# food_info.loc[index]
food_info.iloc[index]  # 此时loc和iloc无区别

Out:

    NDB_No    Shrt_Desc    Water_(g)    Energ_Kcal    Protein_(g)    Lipid_Tot_(g)    Ash_(g)    Carbohydrt_(g)    Fiber_TD_(g)    Sugar_Tot_(g)    ...    Vit_A_IU    Vit_A_RAE    Vit_E_(mg)    Vit_D_mcg    Vit_D_IU    Vit_K_(mcg)    FA_Sat_(g)    FA_Mono_(g)    FA_Poly_(g)    Cholestrl_(mg)
2    1003    BUTTER OIL ANHYDROUS    0.24    876    0.28    99.48    0.00    0.00    0.0    0.00    ...    3069.0    840.0    2.80    1.8    73.0    8.6    61.924    28.732    3.694    256.0
3    1004    CHEESE BLUE    42.41    353    21.40    28.74    5.11    2.34    0.0    0.50    ...    721.0    198.0    0.25    0.5    21.0    2.4    18.669    7.778    0.800    75.0
5    1006    CHEESE BRIE    48.42    334    20.75    27.68    2.70    0.45    0.0    0.45    ...    592.0    174.0    0.24    0.5    20.0    2.3    17.410    8.013    0.826    100.0
3 rows × 36 columns

说明:
loc是根据索引取值,[start: end]表示的范围从start到end
iloc是根据行号取值,[start: end]表示的范围从start到end-1(即不包括end)

In:

# 取某一列数据的三种方法

# 方法1:传入列名,获取该列的值
column = food_info[‘NDB_No‘]
print(column.head(3))
print(‘---‘ * 10)

# 同样以列表形式传入多列的名称,获取多列数据
print(food_info[[‘NDB_No‘, ‘Water_(g)‘]].head(3))
print(‘---‘ * 10)

# 方法2:通过loc方法,逗号左边传入行数(切片),右边传入列名
water_loc = food_info.loc[:, ‘Water_(g)‘]
print(water_loc.head(3))
print(‘---‘ * 10)

# 方法3:通过iloc方法,逗号左边传入行数(切片),右边传入列号索引
water_iloc = food_info.iloc[:, 2]
print(water_iloc.head(3))

Out:

0    1001
1    1002
2    1003
Name: NDB_No, dtype: int64
------------------------------
   NDB_No  Water_(g)
0    1001      15.87
1    1002      15.87
2    1003       0.24
------------------------------
0    15.87
1    15.87
2     0.24
Name: Water_(g), dtype: float64
------------------------------
0    15.87
1    15.87
2     0.24
Name: Water_(g), dtype: float64

In:

# 获取两列或多列数据的三种方法

cols = [‘Protein_(g)‘, ‘Water_(g)‘]

# 方法一: 直接传入列名(由列名构成的list结构)
cols_value = food_info[cols]
print(cols_value.head(3))  # 显示三行
print(‘---‘ * 10)

# 方法二: 通过loc方法,逗号左边传入要取的行数,右边传入列名
cols_loc = food_info.loc[:, cols]
print(cols_loc.head(3))
print(‘---‘*10)

# 方法三:通过iloc方法,逗号左边传入要取的行数,右边传入列名索引的list
cols_iloc = food_info.iloc[:, [2, 4]]
print(cols_iloc.head(3))

Out:

Protein_(g)  Water_(g)
0         0.85      15.87
1         0.85      15.87
2         0.28       0.24
------------------------------
   Protein_(g)  Water_(g)
0         0.85      15.87
1         0.85      15.87
2         0.28       0.24
------------------------------
   Water_(g)  Protein_(g)
0      15.87         0.85
1      15.87         0.85
2       0.24         0.28

In:

# 获取所有列中以g为结尾的列

# 获取所有列名,并使用tolist()方法转化为列表
cols = food_info.columns.tolist()
new_col = [] 

# 对列名进行遍历
for col in cols:
    if col.endswith(‘(g)‘):  # 判断列名是否以g为结尾
        new_col.append(col)  # 获取所有以g为结尾的列名

new_data = food_info[new_col]  # 以列名为索引,取对应的值
new_data.head(3)  #显示前3行

Out:

    Water_(g)    Protein_(g)    Lipid_Tot_(g)    Ash_(g)    Carbohydrt_(g)    Fiber_TD_(g)    Sugar_Tot_(g)    FA_Sat_(g)    FA_Mono_(g)    FA_Poly_(g)
0    15.87    0.85    81.11    2.11    0.06    0.0    0.06    51.368    21.021    3.043
1    15.87    0.85    81.11    2.11    0.06    0.0    0.06    50.489    23.426    3.012
2    0.24    0.28    99.48    0.00    0.00    0.0    0.00    61.924    28.732    3.694

3.Pandas数据预处理

In:

# 加减乘除操作

# print(food_info[‘Iron_(mg)‘])

 #对应相除,对每个数据操作
div_1000 = food_info[‘Iron_(mg)‘]/1000
print(div_1000.head(3))
print(‘---‘*10)

# 对应相加,其他操作类似,依次对应元素操作
add_1000 = food_info[‘Iron_(mg)‘] + 1000
print(add_1000.head(3))
print(‘---‘*10)

# 取出数据中的两列,然后相乘。也是对应元素相乘
water_energy = food_info[‘Iron_(mg)‘] * food_info[‘Water_(g)‘]
print(water_energy.head(3))
print(‘---‘*10)

# 将water_energy列做为新元素列,添加到food_info中是以字典的形式更新
print(food_info.shape)
food_info[‘water_energy‘] = water_energy
print(food_info.shape)

Out:

0    0.00002
1    0.00016
2    0.00000
Name: Iron_(mg), dtype: float64
------------------------------
0    1000.02
1    1000.16
2    1000.00
Name: Iron_(mg), dtype: float64
------------------------------
0    0.3174
1    2.5392
2    0.0000
dtype: float64
------------------------------
(8618, 36)
(8618, 37)

In:

# 归一化操作

# 用.max()函数,获取列最大值
max_calories = food_info[‘Energ_Kcal‘].max()
print(max_calories)
print(‘---‘*10)

norm_calories = food_info[‘Energ_Kcal‘] / max_calories
print(norm_calories.head(3))

Out:

902
------------------------------
0    0.794900
1    0.794900
2    0.971175
Name: Energ_Kcal, dtype: float64

In:

# 排序操作

# 参数1:对该列进行排序;
# 参数二:是否覆盖该列;默认升序
# 缺失值显示NaN,默认缺失值排在最后
food_info.sort_values(‘Sodium_(mg)‘, inplace=True)
print(food_info[‘Sodium_(mg)‘].head(3))
print(‘---‘*10)

# 指定参数ascending=False,改为降序
food_info.sort_values(‘Sodium_(mg)‘, inplace=True, ascending=False)
print(food_info[‘Sodium_(mg)‘].head(3))
print(‘---‘*10)

Out:

760     0.0
787     0.0
2270    0.0
Name: Sodium_(mg), dtype: float64
------------------------------
276     38758.0
5814    27360.0
6192    26050.0
Name: Sodium_(mg), dtype: float64

In:

import pandas as pd
import numpy as np

# 先读取泰坦尼克号收据
titantic_survival = pd.read_csv(r‘D:\数据分析\02_Pandas\pandas\titanic_train.csv‘, engine=‘python‘)
titantic_survival.head()  # 显示前5行

Out:

PassengerId    Survived    Pclass    Name    Sex    Age    SibSp    Parch    Ticket    Fare    Cabin    Embarked
0    1    0    3    Braund, Mr. Owen Harris    male    22.0    1    0    A/5 21171    7.2500    NaN    S
1    2    1    1    Cumings, Mrs. John Bradley (Florence Briggs Th...    female    38.0    1    0    PC 17599    71.2833    C85    C
2    3    1    3    Heikkinen, Miss. Laina    female    26.0    0    0    STON/O2. 3101282    7.9250    NaN    S
3    4    1    1    Futrelle, Mrs. Jacques Heath (Lily May Peel)    female    35.0    1    0    113803    53.1000    C123    S
4    5    0    3    Allen, Mr. William Henry    male    35.0    0    0    373450    8.0500    NaN    S

In:

# 读取年龄列
age = titantic_survival[‘Age‘]

# 判断age列中的值是否缺失
# 缺省值Nan,返回布尔值;
# 缺失值返回True;否则返回False
age_is_null = pd.isnull(age)  

# 以age_is_null 为索引值,获取所有缺失值
age[age_is_null].head
# 利用len函数,得到缺失值的数量。
print(len(age[age_is_null]))  

Out:

177

In:

# 传入没有缺失值的索引,获取所有没有缺失值的行

good_age = titantic_survival[‘Age‘][age_is_null == False]
good_age.head()

Out:

0    22.0
1    38.0
2    26.0
3    35.0
4    35.0
Name: Age, dtype: float64

4.Pandas的常用函数

In:

# mean函数获取平均值

mean_age = titantic_survival[‘Age‘].mean()
print(mean_age)  

# 求平均值要求所有值不能有缺失
# mean函数会自动过滤缺失值

Out:

29.69911764705882

In:

# fillna函数对缺失值进行处理

age_series = titantic_survival[‘Age‘]

#用平均值替换缺失值
# age_series.fillna(mean_age, inplace=True)
# print(age_series.head(3))

In:

# dropna函数对缺失值处理

# 按列删除,删除有缺失值的列
# axis=1按照列删除
drop_nan_cols = titantic_survival.dropna(axis=1)

# 按行删除,删除age和sex列中有缺失的行
# axis=0表示按行删除
# subset表示对哪个列进行操作
dropped_nan = titantic_survival.dropna(axis=0, subset=[‘Age‘, ‘Sex‘])
dropped_nan.head()

Out:

PassengerId    Survived    Pclass    Name    Sex    Age    SibSp    Parch    Ticket    Fare    Cabin    Embarked
0    1    0    3    Braund, Mr. Owen Harris    male    22.0    1    0    A/5 21171    7.2500    NaN    S
1    2    1    1    Cumings, Mrs. John Bradley (Florence Briggs Th...    female    38.0    1    0    PC 17599    71.2833    C85    C
2    3    1    3    Heikkinen, Miss. Laina    female    26.0    0    0    STON/O2. 3101282    7.9250    NaN    S
3    4    1    1    Futrelle, Mrs. Jacques Heath (Lily May Peel)    female    35.0    1    0    113803    53.1000    C123    S
4    5    0    3    Allen, Mr. William Henry    male    35.0    0    0    373450    8.0500    NaN    S

In:

# 统计不同等级船舱的平均费用

passenget_classes = [1, 2, 3]  # 船舱等级
fares_by_class = {}

for this_class in passenget_classes:
    # 以船舱等级为this_class为索引,得到this_class的所有行
    class_rows = titantic_survival[titantic_survival["Pclass"] == this_class]
    # 从得到数据中,取Fare列对应的所有值
    class_fare = class_rows[‘Fare‘]
    # 取平均
    fare_mean = class_fare.mean()
    # 统计
    fares_by_class[this_class] = fare_mean

print(fares_by_class)

Out:

{1: 84.15468749999992, 2: 20.66218315217391, 3: 13.675550101832997}

In:

# 利用pivot_table函数,实现上述功能。

passenger_survival = titantic_survival.pivot_table(index=‘Pclass‘, values=‘Survived‘, aggfunc=np.mean)
print(passenger_survival)

# index参数:设置索引,以index给定值为基准进行统计
# values参数:设置值, 要统计的列
# aggfunc参数:设置对values的运算函数,按照哪种方式进行统计

Out:

        Survived
Pclass
1       0.629630
2       0.472826
3       0.242363

In:

# pivot_table函数,统计船舱中乘客的平均年龄

passenger_age = titantic_survival.pivot_table(index=‘Pclass‘, values=‘Age‘)
print(passenger_age)
# 默认aggfunc参数为np.mean

Out:

              Age
Pclass
1       38.233441
2       29.877630
3       25.140620

In:

# pivot_table函数,统计登船地点的价格与获救人数多个指标

port_stats = titantic_survival.pivot_table(index=‘Embarked‘, values=[‘Fare‘, ‘Survived‘], aggfunc=np.sum)
print(port_stats)

Out:

                Fare  Survived
Embarked
C         10072.2962        93
Q          1022.2543        30
S         17439.3988       217

In:

# loc函数,获取具体列中的元素

row_index_age = titantic_survival.loc[83, ‘Age‘]  # 获取83号样本的年龄
row_index_cls = titantic_survival.loc[83, ‘Pclass‘]  # 获取83号样本的船舱等级

In:

# reset_index函数,设置索引

# 首先利用sort_values按照年龄降序排序
new_titantic = titantic_survival.sort_values(‘Age‘, ascending=False)
# 利用reset_index函数重新设置索引,并删除缺失值;drop=True删掉之前的索引值
new_titantic_reindex = new_titantic.reset_index(drop=True)

print(new_titantic_reindex.loc[:3])

Out:

   PassengerId  Survived  Pclass                                  Name   Sex  0          631         1       1  Barkworth, Mr. Algernon Henry Wilson  male
1          852         0       3                   Svensson, Mr. Johan  male
2          494         0       1               Artagaveytia, Mr. Ramon  male
3           97         0       1             Goldschmidt, Mr. George B  male  

In:

# apply函数,自定义函数实现特定功能

def hundred_row(columns):

    # 获取每列中的第100号样本
    item = columns.loc[99]
    return item

# 使用apply函数,传入函数对象,执行函数中的功能
hundred_row = titantic_survival.apply(hundred_row)
print(hundred_row)

# dataframe.apply(function, axis) 对一行或一列做一些操作
# axis=0时,对dataframe的每一列进行操作
# apply函数对dataframe的每一列传入到function中,并获取返回值
# 和线程池中的apply函数原理相同

Out:

PassengerId                  100
Survived                       0
Pclass                         2
Name           Kantor, Mr. Sinai
Sex                         male
Age                           34
SibSp                          1
Parch                          0
Ticket                    244367
Fare                          26
Cabin                        NaN
Embarked                       S
dtype: object

In:

# apply函数,定义函数,重新定义船舱等级

def which_class(row):
    pclass = row[‘Pclass‘]
    if pd.isnull(pclass):
        return "Unknow"
    elif pclass == 1:
        return "First class"
    elif pclass == 2:
        return "Second class"
    else:
        return "Third class"

classes = titantic_survival.apply(which_class, axis=1)
print(classes.head())

Out:

0    Third class
1    First class
2    Third class
3    First class
4    Third class
dtype: object

In:

# apply函数,统计年龄是否成年

def gen_age_label(row):
    age = row[‘Age‘]

    if pd.isnull(age):
        return "Unknow"
    elif age < 18:
        return "Minor"
    else:
        return "Adult"

age_lab = titantic_survival.apply(gen_age_label, axis=1)
print(age_lab.head())

Out:

0    Adult
1    Adult
2    Adult
3    Adult
4    Adult
dtype: object

In:

# pivot_table函数,统计成年人获救概率

titantic_survival[‘age_lab‘] = age_lab
age_suvival = titantic_survival.pivot_table(index=‘age_lab‘, values=‘Survived‘)
print(age_suvival)

Out:

         Survived
age_lab
Adult    0.361183
Minor    0.539823

In:

# apply函数, 统计每一列中缺失值个数

def not_null(columns):

    # 判断每列中的值是否为缺失值
    col_null_index = pd.isnull(columns)
    # 获取所有缺失值
    null = columns[col_null_index]

    return len(null)  # 返回缺失值数量

null_count = titantic_survival.apply(not_null)
print(null_count) 

Out:

PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64

5.Pandas的series结构

In:

# dataframe中的一行或一列称之为series
# series就是dataframe的一个子集

import pandas as pd
import numpy as np

fandango = pd.read_csv(r"D:\数据分析\02_Pandas\pandas\fandango_score_comparison.csv", engine=‘python‘)
series_film = fandango[‘FILM‘]

print(type(series_film))
print(series_film.head())
print(series_film[:5])

series_rt = fandango[‘RottenTomatoes‘]
series_rt[:4]

Out:

<class ‘pandas.core.series.Series‘>
0    Avengers: Age of Ultron (2015)
1                 Cinderella (2015)
2                    Ant-Man (2015)
3            Do You Believe? (2015)
4     Hot Tub Time Machine 2 (2015)
Name: FILM, dtype: object
0    Avengers: Age of Ultron (2015)
1                 Cinderella (2015)
2                    Ant-Man (2015)
3            Do You Believe? (2015)
4     Hot Tub Time Machine 2 (2015)
Name: FILM, dtype: object

In:

# 构造一个series结构

from pandas import Series

# 拿到电影名, values返回该列的所有值,返回ndarray
film_name = series_film.values
# 拿到评分值,返回ndarray
film_rt = fandango[‘RottenTomatoes‘].values

# 构造新series,设置索引为电影名
series_new = Series(film_rt, index=film_name)
print(series_new.head())

# 设置索引后,即可按照索引取值,相当于额外增加一条索引
series_new[[‘Cinderella (2015)‘, ‘Ant-Man (2015)‘]]
# 也可以按照原来的数字索引取值
series_new[:2]

Out:

Avengers: Age of Ultron (2015)    74
Cinderella (2015)                 85
Ant-Man (2015)                    80
Do You Believe? (2015)            18
Hot Tub Time Machine 2 (2015)     14
dtype: int64
Avengers: Age of Ultron (2015)    74
Cinderella (2015)                 85
dtype: int64

注:

利用series_new.loc[:3]会报错!!
因为loc方法要求索引为int类型,但是构造的series_new构造时,指定的索引为字符串

In:

original__index = series_new.index.tolist()
# 排序
sorted_index = sorted(original__index)

# reindex(或set_index)函数重新设置索引
sorted_by_reindex = series_new.reindex(sorted_index)
print(sorted_by_reindex.head())

Out:

‘71 (2015)                    97
5 Flights Up (2015)           52
A Little Chaos (2015)         40
A Most Violent Year (2014)    90
About Elly (2015)             97
dtype: int64

In:

# series结构基本操作

# 相加,对应位置相加,其他运算类似
print(np.add(series_new, series_new).head())

# 判断(得到True和False做索引)
print((series_new > 50).head())

Out:

Avengers: Age of Ultron (2015)    148
Cinderella (2015)                 170
Ant-Man (2015)                    160
Do You Believe? (2015)             36
Hot Tub Time Machine 2 (2015)      28
dtype: int64
Avengers: Age of Ultron (2015)     True
Cinderella (2015)                  True
Ant-Man (2015)                     True
Do You Believe? (2015)            False
Hot Tub Time Machine 2 (2015)     False
dtype: bool

原文地址:https://www.cnblogs.com/pythoner6833/p/9275229.html

时间: 2024-10-04 16:51:46

02_Pandas基本使用的相关文章