3D数学读书笔记——3D中的方位与角位移

本系列文章由birdlove1987编写,转载请注明出处。

文章链接: http://blog.csdn.net/zhurui_idea/article/details/25339595

方位和角位移的基本概念

什么是方位、角位移?

直观的说,我们知道,物体的“方位”主要描写叙述物体的朝向,然而,“方向”和“方位”并不全然一样。向量有“方向”但没有“方位”,差别在于,当一个向量指向特定方向时,能够让向量自转,但向量却不会发生不论什么变化,由于向量的属性仅仅有大小,而没有厚度宽度

然而,当一个物体朝向特定的方向时,让它和上面向量一样自转,我们就会发现物体的方位改变了。

从技术角度来讲,这就说明在3D中,仅仅要用两个參数,就能用參数表示一个方向。可是,要确定一个方位,至少须要三个參数。

描写叙述物体的方位时,不能使用绝对量。方位是通过于相对已知方位的旋转来描写叙述的。旋转的量称作角位移。换句话说,在数学上描写叙述方位就等价于描写叙述角位移。

ps:我们用矩阵和四元数来表示角位移,用欧拉角来表示方位。

方位表示

矩阵形式

3D中,描写叙述坐标系中方位的一种方法就是列出这个坐标系的基向量,这些基向量是用其它的坐标系来描写叙述的。用这些基向量构成一个3x3矩阵,然后就能用矩阵形式来描写叙述方位。也就是说,能用一个旋转矩阵来描写叙述两个坐标系之间的相对方位,然后用这个旋转矩阵把一个坐标系中的向量转换到还有一个坐标系中。

矩阵形式的长处

1.能够马上进行向量的旋转

2.矩阵的形式被图形API所用

3.个角位移连接。

矩阵形式的缺点

1.矩阵占用很多其它的内存

2.难于使用,不太直观。

3.矩阵可能是病态的(数据冗余

四元数表示

四元数的“差”被定义为一个方位到还有一个方位的角位移。ps:上篇笔记中具体的记录的四元数的相关性质,这里就不在过多说明了。

四元数表示的长处

1.平滑插值。

2.高速连接和角位移求逆

3.能和矩阵形式高速转换。

4.仅有四个数,节省空间

四元数表示的缺点

1.比欧拉角略微大一些。

2.四元数可能不合法。

3.难于使用

欧拉角

历史渊源:欧拉角著名的数学家Leonhard
Euler的名字命名,他证明了角位移序列等价于单个角位移。

欧拉角的基本思想是将角位移分解为绕三个相互垂直轴的三个旋转组成的序列。随意的三个轴和随意的序列都能够,但最有意义的是使用笛卡尔坐标系并按一定顺序所组成的旋转序列。

欧拉角表示角位移的长处

1.欧拉角对我们来说非常easy使用。

2.最简洁的表达方式。

3.随意三个数都是合法的。

欧拉角表示角位移的缺点:

1.给定的表达方式不唯一(旋转序列不唯一导致)。

2.两个角度间求插值很困难

各方法比較













































任务/性质 矩阵 欧拉角 四元数
在坐标系间旋转点 不能(必须转换到矩阵) 不能(必须转换到矩阵)

连接或增量旋转 能,但比四元数慢,会有矩阵蠕变 不能 能,比矩阵块
插值 基本上不能 能,但可能遭遇万向锁 Slerp提供了平滑插值
易用程度
在内存或文件里的存储 9个数 3个数 4个数
对给定方位的表达式方式是否唯一 唯一 不唯一,对允许方位有无数种表示方法 不唯一,有两种表示方法,相互为负
可能导致非法 矩阵蠕变 随意三个数构成合法地欧拉角 可能出现差积累,从而产生非法的四元数


不同方位表示方法的建议

1.欧拉角最easy使用。

2.假设须要在坐标系之间转换向量,那么就选择矩阵形式

3.当须要大量保持方位数据时,就使用欧拉角四元数

4.平滑插值仅仅能用四元数来完毕。

  -End-

參考文献:
(1)《3D Math Primer for Graphics and Game Development》

(2) 维基百科

3D数学读书笔记——3D中的方位与角位移,布布扣,bubuko.com

时间: 2024-10-24 16:01:08

3D数学读书笔记——3D中的方位与角位移的相关文章

3D数学读书笔记——四元数

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25400659 什么是四元数 复数是由实数加上虚数单位 i 组成,其中 i2  = -1 相似地,四元数都是由实数加上三个元素 i.j.k 组成,而且它们有如下的关系: i2 = j2 = k2 = ijk = -1 每个四元数都是 1.i.j 和 k 的线性组合,即是四元数一般可表示为a + bi + cj + dk. 关于

3D数学读书笔记——向量运算及在c++上的实现

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24782661 开始之前:接上上篇说的,张宇老师说过线性代数研究的就是向量.其实严谨的说,数学中专门研究向量的分之称作线性代数,线性代数是一个非常有趣并且应用广泛的研究 领域,但它与3D数学关注的领域并不相同.3D数学主要关心向量和向量运算的几何意义. 零向量:任何集合,都存在 the additive identity el

3D数学读书笔记——矩阵基础番外篇之线性变换

本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章讨论过多坐标系的问题.有的人可能会问我那么多坐标系,它们之间怎么关联呢?嘿嘿~这次的内容可以为解决这个问题打基础奥! 线性变换基础(3D数学编程中,形式转换经常是错误的根源,所以这部分大家要多多思考,仔细运算) 一般来说,方阵(就是行和列都相等的矩阵)能描述任意的线性变换,所以后面我们一般用方阵来变

3D数学读书笔记——矩阵基础

本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031 矩阵是3D数学的重要基础,它主要用来描述两个坐标系统间的关系,通过定义一种运算而将一个坐标系中的向量转换到另一个坐标系中. 在线性代数中,矩阵就是一个以行和列形式组织的矩形数字块.向量是标量的数组,矩阵则是向量的数组. 矩阵的维度和记法 矩阵的维度被定义为它包含了多少行和多少列,一个 r * c 矩阵有 r 行.

3D数学读书笔记——矩阵进阶

本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25242725 终于要学习矩阵的平移了,通过平移可以处理很多问题,包括非坐标轴基准的变换问题,不同坐标系转换问题.嘿嘿! 行列式(其实行列式就是一种计算法则) 在任意矩阵中都存在一个标量,称作该方阵的行列式. 方阵M的行列式记作 |M| 或 det M .非方阵矩阵的行列式是未定义的. 2 * 2阶矩阵行列式的定义 3 * 3阶

3D数学读书笔记——笛卡尔坐标系统

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学是一门和计算机几何相关的学科,计算几何则是研究用数值方法解决几何问题的学科.3D数学讲解如何在3D空间中精确度量位置.距离和角度. 2.在3D数学里使用最广泛的度量体系是笛卡尔坐标系统.(笛卡尔数学由法国数学家Rene Descartes发明,并以他的名字命名) 3.关于数的类型:实数包含有理数和无

3D数学读书笔记——多坐标系和向量基础

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24662453 第一个知识点:多坐标系 基础:仅仅要选定原点和坐标轴就能在不论什么地方建立坐标系 从问题问出发:为什么要使用多坐标系.一个3D系利用其无限延伸性.就可以包括空间中全部的点,建立一个统一的世界,这样不是更简单吗? 实践中的答案:大量实践发现.在不同的环境下使用不同的坐标系更加方便(邓爷爷说过:实践是检验真理的唯一

3D数学--学习笔记(六):我对矩阵的一些简单理解总结

1.矩阵的行列式: 任意矩阵中都存在一个标量,称作矩阵的行列式,这里该值记为A. 2D中,A等于以基向量为两边的平行四边形的有符号面积.有符号面积是指如果平行四边形相对于原来的方位"翻转",那么面积为负. 3D中,A等于以变换后的基向量为三边的平行六面体的有符号体积.3D中,如果变换使得平行六面体"由里向外"翻转,则行列式变负. A的大小和矩阵变换导致的尺寸改变有关.IAI和面积(2D).体积(3D)的改变相关. A的符号则说明了变换矩阵是否包含镜像. A还能对矩阵

《Android源码设计模式解析》读书笔记——Android中你应该知道的设计模式

断断续续的,<Android源码设计模式解析>也看了一遍,书中提到了很多的设计模式,但是有部分在开发中见到的几率很小,所以掌握不了也没有太大影响. 我觉得这本书的最大价值有两点,一个是从设计模式的角度去理解Android源码,结合着日常开发中的常用类,对设计模式的理解会更加的深刻:另外一个好处就是了解常用模式,再看其他人写的代码的时候,更容易理解代码思路.下面是我的读书笔记和一些思考,设计模式只整理我认为重要的部分. 建造者模式 建造者模式最明显的标志就是Build类,而在Android中最常