转自;http://flyingcat2013.blog.51cto.com/7061638/1281026
前面的三种排序算法(冒泡排序,选择排序,插入排序)在平均情况下均为O(n^2)复杂度,在处理较大数据的时候比较吃力。现在来说说相对快速一些的算法,例如下面的归并排序。
算法概述/思路
归并排序是基于一种被称为“分治”(divide and conquer)的策略。其基本思路是这样的:
1.对于两个有序的数组,要将其合并为一个有序数组,我们可以很容易地写出如下代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
容易看出,这样的合并算法是高效的,其时间复杂度可达到O(n)。
2.假如有一个无序数组需要排序,但它的两个完全划分的子数组A和B分别有序,借助上述代码,我们也可以很容易实现;
3.那么,如果A,B无序,怎么办呢?可以把它们再分成更小的数组。
4.如此一直划分到最小,每个子数组都只有一个元素,则可以视为有序数组。
5.从这些最小的数组开始,逆着上面的步骤合并回去,整个数组就排好了。
总而言之,归并排序就是使用递归,先分解数组为子数组,再合并数组。
下面是归并排序的示意图(图片来自维基百科):
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
需要说明的是,在合并数组的时候需要一个temp数组。我们当然有足够的理由在每次调用的时候重新new一个数组(例如,减少一个参数),但是,注意到多次的创建数组对象会造成额外的开销,我们可以在开始就创建一个足够大的数组(等于原数组长度就行),以后都使用这个数组。实际上,上面的代码就是这么写的。
算法性能/复杂度
归并排序的效率是很高的,由于递归划分为子序列只需要logN复杂度,而合并每两个子序列需要大约2n次赋值,为O(n)复杂度,因此,只需要简单相乘即可得到归并排序的时间复杂度
O(㏒n)。并且由于归并算法是固定的,不受输入数据影响,所以它在最好、最坏、平均情况下表现几乎相同,均为O(㏒n)。
但是,归并排序最大的缺陷在于其空间复杂度。从上面的代码可以看到,在合并子数组的时候需要一个辅助数组,然后再把这个数据拷贝回原数组。所以,归并排序的空间复杂度(额外空间)为O(n)。可不可以省略这个数组呢?不行!如果取消辅助数组而又要保证原来的数组中数据不被覆盖,那就必须要在数组中花费大量时间来移动数据。不仅容易出错,还降低了效率。因此这个辅助空间是少不掉的。
算法稳定性
因为我们在遇到相等的数据的时候必然是按顺序“抄写”到辅助数组上的,所以,归并排序同样是稳定算法。
算法适用场景
归并排序在数据量比较大的时候也有较为出色的表现(效率上),但是,其空间复杂度O(n)使得在数据量特别大的时候(例如,1千万数据)几乎不可接受。而且,考虑到有的机器内存本身就比较小,因此,采用归并排序一定要注意。