对称加解密算法解析

一、概述

cryptosystem密码学系统分为私钥系统及公钥系统。

私钥系统:指加解密双方事先做了私有信息约定,采用对称密钥算法; 
公钥系统:指发送方用公开凭证对数据进行加密后传输,接收方使用私有凭证进行解密,采用非对称密钥算法;

对称加密分类

流加密(stream cipher),加密和解密双方使用相同伪随机加密数据流,一般都是逐位异或或者随机置换数据内容,常见的流加密算法如RC4。 
分组加密加密(block cipher),也叫块加密,将明文分成多个等长的模块(block),使用确定的算法和对称密钥对每组分别加密解密。 
高级的分组加密建立以迭代的方式产生密文,每轮产生的密文都使用不同的子密钥,而子密钥生成自原始密钥。 
数据加密中分组方式成为分组模式,如ECB;当加密中数据长度不足以满足分组时需要进行填充,此时采用的方式对应填充算法,如PKCS5Padding。

二、对称密钥算法

DES

Data Encryption Standard,数据加密标准,由IBM研究设计。 
密钥长度8字节,有效位56bit;其中,分组为64bit=8字节。

3DES

DES像 AES过渡的加密标准。 
由3个64bit的DES密钥对数据进行三次加密。 
密钥长度为24字节,有效位168bit。

AES

Advanced Encryption Standard,高级加密标准。 
包括AES-128;AES-192;AES-256算法,分组大小为128bit=16字节。

三、密码分组模式

1 ECB

Electronic Code Book,电码本模式 
相同分组输出相同的密钥,简单且利于并行运算,但无法隐藏模式,也容易招致攻击

2 CBC

Cipher Block Chaining,密文分组链模式 
需要初始化向量IV(长度与分组大小相同),第一组的密文与第二组数据XOR计算后再进行加密产生第二组密文 
安全性较好,TLS、IPSec等标准的推荐模式,但不利于并行运算

3 CFB

Cipher Feedback,密文反馈模式 

4 OFB

Output Feedback (OFB),输出反馈模式 

三、填充算法

1 NoPadding,无填充算法,通常要求数据满足分组长度要求; 
2 ZerosPadding,全部填充为0; 
3 PKCS5Padding,填充字节数; 
4 others…

DES像 AES过渡的加密标准 
由3个64bit的DES密钥对数据进行三次加密 
密钥长度为24字节,有效位168bit

四、代码示例

/**
 * 加密工具类
 *
 * <pre>
 * AES支持128/192/256,取决于密钥长度(与位数对应)
 * DES密钥长度8字节
 * 3DES密钥长度24字节
 *
 * 采用CBC 需指定初始向量IV,长度与分组大小相同
 * DES为8字节;AES为16字节
 *
 * </pre>
 */
public class Crypto {
    static {
        // add bouncycastle support for md4 etc..
        Security.addProvider(new BouncyCastleProvider());
    }
    public static enum CryptType {
        DES_ECB_PKCS5("DES/ECB/PKCS5Padding"),
        DES_CBC_PKCS5("DES/CBC/PKCS5Padding", 8),
        DESede_ECB_PKCS5("DESede/ECB/PKCS5Padding"),
        DESede_CBC_PKCS5("DESede/CBC/PKCS5Padding", 8),
        AES_ECB_PKCS5("AES/CBC/PKCS5Padding", 16),
        AES_CBC_PKCS5("AES/CBC/PKCS5Padding", 16),
        AES_CBC_PKCS7("AES/CBC/PKCS7Padding", 16);
        public final String algorithm;
        public final String keyAlg;
        public final int ivlen;
        private CryptType(String algorithm, int ivlen) {
            this.algorithm = algorithm;
            this.keyAlg = this.algorithm.substring(0, this.algorithm.indexOf(‘/‘));
            this.ivlen = ivlen;
        }
        private CryptType(String algorithm) {
            this(algorithm, 0);
        }
        @Override
        public String toString() {
            return this.algorithm;
        }
    }
    /**
     * Initialize the key
     *
     * @param type
     * @return
     */
    public static String initKey(CryptType type) {
        try {
            KeyGenerator generator = KeyGenerator.getInstance(type.keyAlg);
            SecretKey secretKey = generator.generateKey();
            byte[] key = secretKey.getEncoded();
            return Codec.byteToHexString(key);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
    /**
     * generate default ivparam for type
     *
     * @return
     */
    public static byte[] generateDefaultIv(CryptType type) {
        byte[] iv = new byte[type.ivlen];
        for (int i = 0; i < iv.length; i++) {
            iv[i] = 0x01;
        }
        return iv;
    }
    /**
     * Encrypt the value with the encryption standard.
     *
     * @param value
     *            raw string
     * @param key
     *            in hex format
     * @param iv
     *            in hex format if exist
     * @param type
     * @return result in hex format
     */
    public static String encrypt(String value, String key, String iv, CryptType type) {
        byte[] dvalue;
        try {
            dvalue = value.getBytes("utf-8");
        } catch (UnsupportedEncodingException e) {
            throw new RuntimeException(e);
        }
        byte[] dkey = Codec.hexStringToByte(key);
        byte[] div = null;
        if (iv != null && iv.length() > 0) {
            div = Codec.hexStringToByte(iv);
        }
        byte[] result = encrypt(dvalue, dkey, div, type);
        return Codec.byteToHexString(result);
    }
    /**
     * Encrypt the value with the encryption standard.
     *
     * <pre>
     * key must have the corresponding length.
     *
     * if use cbc mode which need iv param, the iv must not be null,
     * and iv data length is 16 for aes, 8 for des
     *
     * </pre>
     *
     * @param value
     * @param key
     * @param iv
     * @return
     */
    public static byte[] encrypt(byte[] value, byte[] key, byte[] iv, CryptType type) {
        try {
            SecretKeySpec skeySpec = new SecretKeySpec(key, type.keyAlg);
            Cipher cipher = Cipher.getInstance(type.algorithm);
            IvParameterSpec ivparamSpec = null;
            if (iv != null) {
                ivparamSpec = new IvParameterSpec(iv);
            }
            cipher.init(Cipher.ENCRYPT_MODE, skeySpec, ivparamSpec);
            return cipher.doFinal(value);
        } catch (Exception ex) {
            throw new RuntimeException(ex);
        }
    }
    /**
     * Encrypt the value with the encryption standard.
     *
     * @param value
     *            encoded data in hex format
     * @param key
     *            in hex format
     * @param iv
     *            in hex format if exist
     * @param type
     * @return result raw string
     */
    public static String decrypt(String value, String key, String iv, CryptType type) {
        byte[] dvalue = Codec.hexStringToByte(value);
        byte[] dkey = Codec.hexStringToByte(key);
        byte[] div = null;
        if (iv != null && iv.length() > 0) {
            div = Codec.hexStringToByte(iv);
        }
        byte[] result = decrypt(dvalue, dkey, div, type);
        try {
            return new String(result, "utf-8");
        } catch (UnsupportedEncodingException e) {
            throw new RuntimeException(e);
        }
    }
    /**
     * Decrypt the value with the encryption standard.
     *
     * <pre>
     * key must have the corresponding length.
     *
     * if use cbc mode which need iv param, the iv must not be null,
     * and iv data length is 16 for aes, 8 for des
     *
     * </pre>
     *
     * @param value
     * @param key
     * @param iv
     * @param type
     * @return
     */
    public static byte[] decrypt(byte[] value, byte[] key, byte[] iv, CryptType type) {
        try {
            SecretKeySpec skeySpec = new SecretKeySpec(key, type.keyAlg);
            Cipher cipher = Cipher.getInstance(type.algorithm);
            IvParameterSpec ivparamSpec = null;
            if (iv != null) {
                ivparamSpec = new IvParameterSpec(iv);
            }
            cipher.init(Cipher.DECRYPT_MODE, skeySpec, ivparamSpec);
            return cipher.doFinal(value);
        } catch (Exception ex) {
            throw new RuntimeException(ex);
        }
    }
}

key 长度受限问题

Exception in thread "main" java.security.InvalidKeyException: Illegal key size or default parameters

问题原因:因软件出版政策原因,默认 jdk 环境做了限制,当AES加密密钥大于128位时,会出现以上异常; 
解决办法:下载JCE扩展,替换至 ${java_home}/jre/lib/security 
http://www.oracle.com/technetwork/java/javase/downloads/index.html

五、参考文档:

http://m.blog.csdn.net/article/details?id=51066799 
http://www.blogjava.net/amigoxie/archive/2014/07/06/415503.html

时间: 2024-09-29 08:06:04

对称加解密算法解析的相关文章

加解密算法一:散列算法、对称加解密

.Net中的加解密操作所涉及的对象都在命名空间System.Security.Cryptography下,所以应先在程序中添加using System.Security.Cryptography. 1.散列算法: 用来产生一些数据片段(例如消息或会话项)的散列值的算法.好的散列算法具有在输入数据中的更改可以更改结果散列值中每个比特的特性:因此,散列对于检测在诸如消息等大型信息对象中的任何变化很有用.此外,好的散列算法使得构造两个独立的有相同散列的输入不能通过计算方法实现. 典型的散列算法包括 M

加解密算法

加解密算法概述 工作中经常用到加解密算法大概有以下三种: 单项散列算法 对称散列算法 非对称散列算法 单项散列算法 由不定长的数据转化为固定长的字符串,代表有: sha1 sha1($str[,raw_out=false]);//算法不够复杂 raw_out默认为false,生成一个32位的加密串 如果为true,则生成一个16位的二进制流 md5 md5($str[,strict=false]) strict默认为false,生成一个32位的加密串 如果为true,则生成一个16位的二进制流

DES加解密算法Qt实现

算法解密qt加密table64bit [声明] (1) 本文源码 大部分源码来自:DES算法代码.在此基础上,利用Qt编程进行了改写,实现了DES加解密算法,并添加了文件加解密功能.在此对署名为bengold1979的网友表示感谢!本文是对DES算法代码一文代码的具体描述.该源码仅供学习交流,请勿用于商业目的. (2) 图片及描述 图片及部分解析来自 http://zh.wikipedia.org/wiki/%E8%B3%87%E6%96%99%E5%8A%A0%E5%AF%86%E6%A8%9

AES加解密算法Qt实现

[声明] (1) 本文源码 在一位未署名网友源码基础上,利用Qt编程,实现了AES加解密算法,并添加了文件加解密功能.在此表示感谢!该源码仅供学习交流,请勿用于商业目的. (2) 图片及描述 除图1外,图片及部分解析来自http://zh.wikipedia.org/wiki/%E9%AB%98%E7%BA%A7%E5%8A%A0%E5%AF%86%E6%A0%87%E5%87%86.图1为个人劳动成果,请勿盗用此图. [简介] AES(Advanced Encryption Standard,

php des 对称加解密类

<?php header("Content-Type: text/html;charset=utf-8"); /** * des 对称加解密 */ class des { private $key = ''; private $cipher = MCRYPT_DES; //加解密算法 private $modes = MCRYPT_MODE_ECB; //算法模式 private $iv = ''; //初始化向量 /** * 密钥 */ public function __co

【转】各种加解密算法比较

转自: http://blog.csdn.net/pengzp/article/details/6556674 二.          加密算法介绍 对称加密算法 对称加密算法用来对敏感数据等信息进行加密,常用的算法包括: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合. 3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高. AES(Advanced Encryption Standard

[掌眼]iOS / Android / java / node.js 通用的 AES256 加解密算法

example.m NSString *text = @"text"; NSString *key32 = @"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; NSData *data = [text dataUsingEncoding:NSUTF8StringEncoding]; NSString *encryptedData = [[data AES256EncryptWithKey:key32] base64EncodedStringWi

python实现的Caesar加解密算法

Caesar算法是最简单的加解密算法... # Caeser Cipher import sys,os MyCypher = 25 MyDict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz `[email protected]#$%^&*()_+[]\\;\',./{}|:"<>?' plaintext = 'Hello World!' cryptmsg = '' def encrypt(text, cyph

JavaScript与C#互通的DES加解密算法

原文地址:传送门 本文提供了一个能使JavaScript与C#互通的DES加解密算法的实现,在前台页面中用JavaScript版本的DES算法将数据加密之后,传到服务器端,在服务器端可用C#版本的DES解密算法将其解密,得到原始数据,以起到一定的保密作用.但基于算法本身和密钥保密程度方面的考虑,使用本算法加密后的数据,其保密程度不是很高,故请酌情使用. 声明:本文中的JavaScript版的DES加解密算法来自于互联网,但为了方便于转化成C#版本的代码,本人对其进行了细微调整. JavaScri