最大似然预计(Maximum Likelihood Estimation)

最大似然预计(Maximum Likelihood Estimation)的相关文章

【MLE】最大似然估计Maximum Likelihood Estimation

模型已定,参数未知 最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独

最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分. 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西.最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种.未来准备写一写最大似然估计与它的好朋友们,比如说贝叶斯估计 (Beyasian Estimation), 最大后验估计(Max

最大似然估计(Maximum Likelihood Estimation)

参考资料 [1]     盛骤, 谢式千, 潘承毅. 概率论和数理统计[J]. 2001. [2]     https://en.wikipedia.org/wiki/Maximum_likelihood [3]     https://www.youtube.com/watch?v=fvNUUJuFXM0 [4]     https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables

极大似然估计(maximum likelihood estimination)教程

极大似然估计法是求点估计的一种方法,最早由高斯提出,后来费歇尔(Fisher)在1912年重新提出.它属于数理统计的范畴. 大学期间我们都学过概率论和数理统计这门课程. 概率论和数理统计是互逆的过程.概率论可以看成是由因推果,数理统计则是由果溯因. 用两个简单的例子来说明它们之间的区别. 由因推果(概率论) 例1:设有一枚骰子,2面标记的是"正",4面标记的是"反".共投掷10次,问:5次"正"面朝上的概率? 解:记 "正面"

最大似然估计实例 | Fitting a Model by Maximum Likelihood (MLE)

参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定了数据集,所以该函数就是以模型参数为自变量的函数,通过求导我们就能得到使得该函数值(似然值)最大的模型参数了. Maximum-Likelihood Estimation (MLE) is a statistical technique for estimating model parameters

【机器学习算法-python实现】最大似然估计(Maximum Likelihood)

1.背景 最大似然估计是概率论中常常涉及到的一种统计方法.大体的思想是,在知道概率密度f的前提下,我们进行一次采样,就可以根据f来计算这个采样实现的可能性.当然最大似然可以有很多变化,这里实现一种简单的,实际项目需要的时候可以再更改. 博主是参照wiki来学习的,地址请点击我 这里实现的是特别简单的例子如下(摘自wiki的最大似然) 离散分布,离散有限参数空间[编辑] 考虑一个抛硬币的例子.假设这个硬币正面跟反面轻重不同.我们把这个硬币抛80次(即,我们获取一个采样并把正面的次数记下来,正面记为

Maximum likelihood (最大似然估计法)

最大似然估计法的基本思想 最大似然估计法的思想很简单:在已经得到试验结果的情况下,我们应该寻找使这个结果出现的可能性最大的那个 作为真 的估计. 我们分两种情进行分析: 1.离散型总体 设 为离散型随机变量,其概率分布的形式为 ,则样本 的概率分布为 ,在 固定时,上式表示 取值 的概率:当 固定时,它是 的函数,我们把它记为 并称为似然函数.似然函数 的值的大小意味着该样本值出现的可能性的大小.既然已经得到了样本值 ,那它出现的可能性应该是大的,即似然函数的值应该是大的.因而我们选择使 达到最

Maximum Likelihood 最大似然估计

这个算法解决的问题是,当我们知道一组变量的密度分布函数与从总体采样的个体的时候,需要估计函数中的某些变量. 假设概率密度函数如下: 一般来说,为了计算的方便性,我们会采取对数的方式 现在的目标是要使得上面函数取最大值,自变量为Θ,并且可以是一个向量. 求上面函数最大值,需要用到函数的一阶导数,求极值点,最终判断所要求的点. Reference: http://en.wikipedia.org/wiki/Maximum_likelihood

极大似然估计(Maximum Likelihood)与无监督

1. 极大似然与最大概率 因为不是科班出身,所以最初接触极大似然的时候,总是很奇怪为什么叫极大似然,而不直接叫做最大概率? 后来才知道极大似然是用来估计未知参数的,而最大概率的表述更适合于已知参数的情况下,求解出现最大概率的变量的,举例如下: Max L(θ) = θ1x1+θ2x2+θ3x3 Max P(x) = θ1x1+θ2x2+θ3x3 Max L(θ)是拥有多组观测样本X时,估计θ参数的方法,而Max P(x)正好相反,是已知θ时,求解什么样的x出现会使得P最大. 2.  极大似然与无