Windows二进制文件的Python扩展包

  1. netcdf4
  2. requests
  3. py_gd
  4. openexr
  5. numpy
  6. coverage
  7. mod_wsgi
  8. thrift
  9. pims
  10. setuptools
  11. rpy2
  12. cython
  13. psycopg
  14. shapely
  15. pandas
  16. pyhdf
  17. jupyter
  18. six
  19. rasterio
  20. pythonnet
  21. vlfd
  22. bcolz
  23. astropy
  24. regex
  25. qimage2ndarray
  26. veusz
  27. pyqwt
  28. pyqt4
  29. spyder
  30. psutil
  31. lmfit
  32. django
  33. matplotlib
  34. pycorrfit
  35. mercurial
  36. pillow
  37. cvxpy
  38. logbook
  39. pyksvd
  40. sfepy
  41. scs
  42. pytz
  43. babel
  44. python-ldap
  45. bokeh
  46. fiona
  47. gdal
  48. pytables
  49. dulwich
  50. intbitset
  51. blosc
  52. yt
  53. blaze
  54. pymc
  55. nipype
  56. fonttools
  57. pycuda
  58. numexpr
  59. blender-mathutils
  60. slycot
  61. cvxopt
  62. numba
  63. lsqfit
  64. jsonlib
  65. pyeda
  66. scikits.odes
  67. multineat
  68. pyviennacl
  69. blz
  70. ujson
  71. python-igraph
  72. pymetis
  73. pyfits
  74. pycares
  75. pyproj
  76. pyglet
  77. cx_freeze
  78. la
  79. nitime
  80. triangle
  81. quantlib
  82. pystemmer
  83. py-lmdb
  84. mistune
  85. llist
  86. gvar
  87. cdecimal
  88. cartopy
  89. pyfftw
  90. pgmagick
  91. liblas
  92. kivy
  93. pygame
  94. libsbml
  95. bigfloat
  96. autopy
  97. ceodbc
  98. yappi
  99. assimulo
  100. datrie
  101. entropy
  102. scikit-umfpack
  103. ecos
  104. cobra
  105. cyassimp
  106. crcmod
  107. crc16
  108. curses
  109. cyordereddict
  110. fann2
  111. scikit-fmm
  112. python-levenshtein
  113. pypmc
  114. pymvpa
  115. pymssql
  116. pyminuit
  117. pyemd
  118. pydde
  119. pycosat
  120. pycluster
  121. pycld2
  122. kwant
  123. llvmlite
  124. ffnet
  125. fisher
  126. gensim
  127. opencv
  128. noise
  129. persistent
  130. jpype
  131. pyrxp
  132. pyspharm
  133. simplejson
  134. sparsesvd
  135. wrapt
  136. zodbpickle
  137. zope.interface
  138. zs
  139. setproctitle
  140. python-sundials
  141. pywavelets
  142. pyx
  143. reportlab
  144. rtmidi-python
  145. line_profiler
  146. lp_solve
  147. marisa-trie
  148. milk
  149. minepy
  150. mlpy
  151. msgpack
  152. natgrid
  153. nlopt
  154. ode
  155. planar
  156. polygon
  157. pybluez
  158. pyephem
  159. pyfltk
  160. pyhook
  161. pyopencl
  162. pymongo
  163. gmpy
  164. pyopengl
  165. scikits.vectorplot
  166. pyodbc
  167. apsw
  168. basemap
  169. biopython
  170. bitarray
  171. blist
  172. bottleneck
  173. bsddb3
  174. bsdiff4
  175. btrees
  176. cffi
  177. cytoolz
  178. fastcluster
  179. genshi
  180. gevent
  181. greenlet
  182. hddm
  183. heatmap
  184. libsvm
  185. liblinear
  186. udunits
  187. twainmodule
  188. ta-lib
  189. sqlalchemy
  190. imread
  191. mahotas
  192. python-snappy
  193. python-lz4
  194. pylzma
  195. h5py
  196. pyaudio
  197. pycurl
  198. pyyaml
  199. statsmodels
  200. videocapture
  201. scikit-learn
  202. scikit-image
  203. markupsafe
  204. tornado
  205. pyzmq
  206. pyicu
  207. pycairo
  208. boost.python
  209. lxml
  210. freeimagedll
  211. scipy
  212. pygraphviz
  213. certifi
  214. nltk
  215. twisted
  216. sympy
  217. visvis
  218. libxml-python
  219. mxbase
  220. mako
  221. pysqlite
  222. pyvisa
  223. scons
  224. virtualenv
  225. pip
  226. xray
  227. ets
  228. ipython
  229. openpiv
  230. networkx
  231. gr
  232. pytools
  233. openimageio
  234. meshpy
  235. jinja2
  236. backports.lzma
  237. patsy
  238. wfastcgi
  239. nibabel
  240. pmw
  241. libpython
  242. pyside
  243. nose
  244. pycparser
  245. glumpy
  246. zodb
  247. debug-information-files
  248. vispy
  249. scandir
  250. vtk
  251. re2
  252. bioformats
  253. pymunk
  254. pymol
  255. pywin32
  256. openbabel
  257. pulp
  258. python-dateutil
  259. javabridge
  260. dipy
  261. fisx
  262. qutip
  263. pycifrw
  264. mysqlclient
  265. pyamf
  266. pyamg
  267. friture
  268. psychopy
  269. pygtk
  270. trackpy
  271. pygments
  272. cgal-bindings
  273. simpleitk
  274. bio_formats
  275. jcc
  276. pysfml
  277. pyexiv2
  278. mpi4py
  279. pylibdeconv
  280. iocbio
  281. bazaar
  282. iris
  283. libtfr
  284. pymix
  285. umysql
  286. lazyflow
  287. iminuit
  288. python-cjson
  289. mmlib
  290. pybox2d
  291. openglcontext
  292. pyvrml97
  293. cheetah
  294. pycogent
  295. cellcognition
  296. scikits.timeseries
  297. casuarius
  298. wxpython
  299. ilastik
  300. pyfmi
  301. quickfix
  302. pywcs
  303. scientificpython
  304. vpython
  305. nmoldyn
  306. mmtk
  307. pyalembic
  308. python-lzo
  309. polymode
  310. orange
  311. scikits.delaunay
  312. cld
  313. py-fcm
  314. oursql
  315. zfec
  316. holopy
  317. py2exe
  318. pymutt
  319. vigra
  320. carray
  321. llvmpy
  322. cgkit
  323. epydoc
  324. console
  325. pymedia
  326. pymca
  327. cellprofiler
  328. scitools
  329. scipy-cluster
  330. scikits.scattpy
  331. scikits.samplerate
  332. scikits.ann
  333. scikits.audiolab
  334. pythonmagick
  335. pyxml
  336. pytst
  337. enaml
  338. delny
  339. trfit
  340. rtree
  341. mysql-python
  342. htseq
  343. aspell-python
  344. pyusb-ftdi
  345. silvercity
  346. steps
  347. pylibtiff
  348. pysparse
  349. fipy
  350. vitables
  351. guiqwt
  352. pyropes
  353. scikits.hydroclimpy
  354. tinyarray
  355. sendkeys
  356. dynd
  357. pyserial
  358. pydbg
  359. flask
  360. kiwisolver
  361. atom
  362. docutils
  363. faulthandler
  364. pygit2
  365. pyparsing
  366. pyisapie
时间: 2024-10-31 14:39:42

Windows二进制文件的Python扩展包的相关文章

windows下的python扩展包下载地址

比如lxml什么的 Unofficial Windows Binaries for Python Extension Packages pip install xxx.whl

python基础:python扩展包的安装方式

python扩展包有三种安装方式: 1. pip安装方式.python3默认自带pip,无需另外安装:在python2.7版本上默认为easy_install安装工作进行安装,如果需要使用pip安装,需要自行下载安装(可以从http://www.pip-installer.org网站下载). 2. 系统自带的包安装管理工具. 3. 从源代码安装. 使用pip安装:在command命令行中输入:pip install 包名,例如:pip install flask 使用pip安装指定版本:在com

linux和windows下安装python拓展包及requirement.txt安装类库

http://blog.csdn.net/pipisorry/article/details/39902327 python拓展包安装 直接安装拓展包默认路径: Unix(Linux)默认路径:/usr/local/lib/pythonX.Y/site-packagesWindows默认路径:C:\PythonXY\Lib\site-packages 測试和升级python拓展安装包pip 查看pip安装时相应的python版本号 which pip /d/python3.4.2/Scripts

Python扩展包

Python扩展包 1.NumPy NumPy提供了多种python本身不支持的多种集合,有list.ndarray和ufunc. list 更加灵活的数组,支持多维,数据可不同型,存储数量远大于array.array只支持同型数据,空间有限. ndarray 多维数组类,方便操纵多维数组,数据必须同型,操纵高效. ufunc 对数组进行高效处理的函数.主要用于高维数组的访问,底层使用c/c++实现. 1.1 构造数组 import numpy as np # 一维数组 arr = np.arr

<PY>Python扩展包安装方法(待更新)

1.从官网下载对应版本的exe或者msi双击安装. 2.安装setuptools,并且配置PATH环境变量 c:\Python\Scripts   后使用easy_install或者pip工具安装并自动解决依赖关系. 例如 easy_install numpy或者pip install numpy 3.在 http://www.lfd.uci.edu/~gohlke/pythonlibs/ 找到第三方编译的whl包使用wheel工具安装 4.从github下载zip,tar.gz等压缩包解压后进

windows下安装python的包管理工具pip,scikit-learn

打开https://pip.pypa.io/en/latest/installing.html#python-os-support 下载pip-get.py 进入python,执行pip-get.py 安装完pip,setuptool工具. 进入.python/scripts目录,执行pip install scikit-learn

【Python笔记】如何用C语言实现Python第三方扩展包

Python支持C/C++实现的第3方扩展包,在性能要求高的场合,这种特性显得尤其重要. 本文以实例说明定制Python扩展包的基本步骤. 1. 扩展包源码实现 按照Python官网教程Extending Python with C or C++说明的步骤,扩展模块的源文件实现如下: #include <Python.h> // forward declaration void initpyext(void); // self-defined error obj static PyObject

windows下ML python lib的安装

万事开头难,作为第一篇博客,学不来深入浅出,妙趣横生,但求老老实实把事情说明白. 事情起源于kaggle竞赛者很慷慨地在github上开放了源码,kaggle非常贴心地将这些优异的解决方案和实现整理出来.对于小白级数据工作者,如我,是临摹思路,学习代码的绝好机会.为了享受这场盛宴,我在windows下搭建了python环境.由于ML包依赖有点复杂,本文赘述一二. 常见ML的python lib有:numpy, matplotlib, scipy, scikit-learn. 方式一: 常用的wi

ArcGIS Python 安装其它扩展包(Windows与Linux)

ArcGIS Python 安装其它扩展包(Windows与Linux) 下载 ? https://pypi.org/project/setuptools/#files ? setuptools-40.6.2.zip ? https://pypi.org/project/pip/#files ? pip-18.1.tar.gz ? 解压 ? ? 安装 setuptools ArcGIS Desktop(Windows) ? cd D:\software\setuptools-40.6.2 ? C