洛谷P2398 GCD SUM

题目描述

for i=1 to n

for j=1 to n

 sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:

2

输出样例#1:

5

说明

数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000

——————————————————————————————————

又是数论QAQ

我们可以枚举k

ans=∑k*f[k]

f[k]表示gcd(i,j)=k的个数

f[k]=(n/k)(n/k);

但是我们还要扣掉前面gcd=2k,3k,4k........的

所以f[k]=[n/k]^2-(f[2k]+f[3k]+....)

复杂度是n*(1+1/2+1/3+...+1/n)

根据定积分公式$\int_0^n 1/x{\rm d}x $=ln(n)-ln(1)=ln(n)

所以总复杂的为nln(n)

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int M=100007;
LL read(){
    LL ans=0,f=1,c=getchar();
    while(c<‘0‘||c>‘9‘){if(c==‘-‘) f=-1; c=getchar();}
    while(c>=‘0‘&&c<=‘9‘){ans=ans*10+(c-‘0‘); c=getchar();}
    return ans*f;
}
LL n,f[M],ans;
int main()
{
    n=read();
    for(int i=n;i>=1;i--){
        f[i]=(n/i)*(n/i);
        for(int j=i*2;j<=n;j+=i) f[i]-=f[j];
        ans+=i*f[i];
    }printf("%lld\n",ans);
    return 0;
}

时间: 2024-11-03 22:41:24

洛谷P2398 GCD SUM的相关文章

洛谷1890 gcd区间

题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a[1]..a[n].以下m行,每行2个整数表示询问区间的左右端点.保证输入数据合法. 输出格式: 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 5 3 4 12 3 6 7 1 3 2 3 5 5 输出样例#1: 1 3 7 说明 对于30%的数据,n <= 100, m <=

洛谷P1890 gcd区间 [2017年6月计划 数论09]

P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表示a[1]..a[n]. 以下m行,每行2个整数表示询问区间的左右端点. 保证输入数据合法. 输出格式: 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 5 3 4 12 3 6 7 1 3 2 3 5 5 输出样例#1: 1 3 7 说明 对于30%的数据,

洛谷——P1890 gcd区间

P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表示a[1]..a[n]. 以下m行,每行2个整数表示询问区间的左右端点. 保证输入数据合法. 输出格式: 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 复制 5 3 4 12 3 6 7 1 3 2 3 5 5 输出样例#1: 复制 1 3 7 说明 对于3

[题解]洛谷比赛『期末考后的休闲比赛2』

[前言] 这场比赛已经结束了有几天,但我各种忙,虽然AK但还是没来得及写题解.(我才不会告诉你我跑去学数据结构了) T1 区间方差 (就不贴题好了) 首先可以推公式(我们可以知道,线段树然而并不能通过初中学过的方差公式在log(L)内求出方差): (s2表示方差,L表示区间长度,xi表示区间的每一项,最后一个x上画了一根线表示这些数据的平均数) 用二项式定理完全平方公式可得: 再次展开: 另外,再代入以下这个 得到了: 然后继续吧.. 然后duang地一声合并同类项,于是我们得到了: 然后可以高

洛谷P1313 计算系数 数学 数论

洛谷P1313 计算系数 数学 数论 1.首先我们不管这个系数 a b 那么他的系数就是杨辉三角 他那项就是 c(k,n)x^n*y^m 2.然后现在加了系数 a 和 b ,那么就只要把 a 看做 x中的,然后a与x一样,相当a^n 3.可以发现,x^n*y^m项的系数一定有一个因数a^n*b^m,所以可以提取出来. 4.然后关于求C的话由两种方法,一种方法是杨辉三角 这样要 n^2 求 但数据再大点就挂了 5.然后还可以质因数分解求 6.我是用费马小定理求逆元做的,因为 mod 别的还行,除法

洛谷P1471 方差

蒟蒻HansBug在一本数学书里面发现了一个神奇的数列,包含N个实数.他想算算这个数列的平均数和方差. ——by 洛谷; http://www.luogu.org/problem/show?pid=1471 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

洛谷P1083 借教室 二分 + 差分

洛谷P1083 借教室 二分 + 差分(或说前缀和,其实前缀和更准确一点) 首先二分答案,即取 mid 个人,且他们不会冲突 然后O(n) 判断是否冲突 如何判断呢,首先我们发现 一个人的操作相当于是将 一些连续的山削去了一个高度 然后我们可以记录这座山被消了多少高度,但这样一次就要 O(N) 总共(n^2) 但是我们发现高度差只有两个地方变了,一个是起始,一个是终止 t[ i ] 表示 h[ i ] - h[ i-1 ] 改变过后 于是 t[ s ]-=d,t[ t+1 ]+=d ; 然后这样

VIjos——V 1782 借教室 | | 洛谷——P1083 借教室

https://vijos.org/p/1782|| https://www.luogu.org/problem/show?pid=1083 描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然希望编程解决这个问题.我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借.共有m份订单,每份订单用三个正整数描述,分别为dj,sj,tj,表示

洛谷P1848 [USACO12OPEN]书架Bookshelf

当农夫约翰闲的没事干的时候,他喜欢坐下来看书.多年过去,他已经收集了 N 本书 (1 <= N <= 100,000), 他想造一个新的书架来装所有书. 每本书 i 都有宽度 W(i) 和高度 H(i).书需要按顺序添加到一组书架上:比如说,第一层架子应该包含书籍1 ... k,第二层架子应该以第k + 1本书开始,以下如此.每层架子的总宽度最大为L(1≤L≤1,000,000,000).每层的高度等于该层上最高的书的高度,并且整个书架的高度是所有层的高度的总和,因为它们都垂直堆叠. 请帮助农