数据挖掘(一)

一、数据的相关问题

  1. 数据的质量
  2. 数据预处理,使数据更适合分析
  3. 根据数据联系分析数据,找到数据之间的联系,利用联系进行其余分析

二、名词解释

  • 数据集:数据对象的集合
  • 属性:对象的性质或特性
  • 测量标度:将数值或符号值与对象的属性相关联的规则

数据集的特性

  • 维度
  • 稀疏性:非零项所占比例很小,只存非零项,可节省时间和空间
  • 分辨率:影响数据的性质

数据清理:清理不真实或重复的对象(如人的身高2米,体重2kg)

涉及测量误差的问题: 
噪声、伪像、偏倚、精度、准确率 
涉及数据质量的问题: 
离群点、遗漏、不一致的值、重复数据

数据收集错误:遗漏数据对象、不正确包含数据对象,也就是有其他相似但并不应该包含的数据的干扰

离群点:不同于数据集中其他大部分数据的对象 
遗漏值:对象遗漏属性(比如有人不愿意透漏姓名、年龄)

聚集:将两个或多个对象合并成单个对象(如表1:学号姓名,表2学号成绩,聚集之后就变成一个表:学号姓名成绩)

抽样:选择数据对象子集进行分析的方法,数据挖掘中采用抽样是为了节省数据处理需要的时间、费用。

有效抽样的原理:样本越具代表性,效果越接近整个数据集

抽样方法:简单随机抽样(有放回、无放回),分层抽样(对于总体由不同类型对象组成,且数量差别很大)

时间: 2024-10-04 03:18:20

数据挖掘(一)的相关文章

R语言数据挖掘实战系列(2)

二.R语言简介 R语言是一种为统计计算和图形显示而设计的语言环境,具有免费.多平台支持,同时可以从各种类型的数据源中导入数据,具有较高的开放性以及高水准的制图功能.R是一个体系庞大的应用软件,主要包括核心的R标准包和各专业领域的其他包.R在数据分析.数据挖掘领域具有特别优势. R安装 R可在其主页(https://www.r-project.org/)上获得,根据所选择的平台进行下载安装.安装完成之后启动R.为了方便使用R,可使用免费的图形界面编辑器RStudio,可从https://www.r

【数据挖掘技术】回归

回归(Regression)分析包括线性回归(Linear Regression),这里主要是指多元线性回归和逻辑斯蒂回归(Logistic Regression).其中,在数据化运营中更多的使用逻辑斯蒂回归,它包括响应预测.分类划分等内容. 多元线性回归主要描述一个因变量如何随着一批自变量的变化而变化,其回归公式(回归方程)就是因变量和自变量关系的数据反映.因变量的变化包括两部分:系统性变化与随机性变化,其中,系统性变化是由自变量引起的(自变量可以解释的),随机变化是不能由自变量解释的,通常也

【Python数据挖掘课程】六.Numpy、Pandas和Matplotlib包基础知识

前面几篇文章采用的案例的方法进行介绍的,这篇文章主要介绍Python常用的扩展包,同时结合数据挖掘相关知识介绍该包具体的用法,主要介绍Numpy.Pandas和Matplotlib三个包.目录:        一.Python常用扩展包        二.Numpy科学计算包        三.Pandas数据分析包        四.Matplotlib绘图包 前文推荐:       [Python数据挖掘课程]一.安装Python及爬虫入门介绍       [Python数据挖掘课程]二.K

阿里、腾讯、京东、微软,各家算法&数据挖掘岗位面经大起底!

阿里.腾讯.京东.微软,各家算法&数据挖掘岗位面经大起底! 2016-02-24 36大数据 36大数据 作者: 江少华 摘要: 从2015年8月到2015年10月,花了3个月时间找工作,先后通过内推参加了美团.阿里蚂蚁金服.京东.腾讯.今日头条.Growing IO.微软这7个公司的面试,同时参加了网易游戏.LinkedI In中国这2个公司的笔试,拿到比较优 … 从2015年8月到2015年10月,花了3个月时间找工作,先后通过内推参加了美团.阿里蚂蚁金服.京东.腾讯.今日头条.Growin

数据挖掘十大经典算法

一. C4.5  C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足: 2) 在树构造过程中进行剪枝: 3) 能够完成对连续属性的离散化处理: 4) 能够对不完整数据进行处理. C4.5算法有如下优点:产生的分类规则易于理解,准确率较高.其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导

2017.06.29数据挖掘基础概念第十,十一章

第十章63.什么是聚类分析 一个把数据对象划分成子集的过程.每一个子集市一个簇,使得簇中的对象彼此相似,但与其他簇中的对象不相似.由聚类分析产生的簇的集合称做一个聚类.64.数据挖掘对聚类的要求 1.可伸缩性 2.处理不同属性类型的能力 3.发现任意形状的簇 4.对于确定输入参数的领域知识的要求 5.出来噪声数据的能力 6.增量聚类和对输入次序不敏感 7.聚类高维数据的能力 8.基于约束的聚类 9.可解释性和可用性 10.划分准则 11.簇的分离性 12.相似性度量 13.聚类空间65.基本聚类

2017.06.29 数据挖掘概念知识第一章

第一章1.数据仓库技术:1.数据清理 2.数据集成 3.联机分析处理2.数据挖掘(知识发现)过程P5详见图 1.数据清理 2.数据集成 3.数据选择 4.数据变换 5.数据挖掘 6.模式评估 7.知识表示3.大数据的特点: 1.量大 2.种类多 3.处理速度快 4价值密度低 5.复杂性4.类与概念描述方法过程: 1.数据特征化 2.数据区分 3.数据特征化和区分5.分类如何提供导出的模型: 导出的模型可以多种形式表示:分类规则.决策树.数学公式或神经网络6.一个模型是有趣的: 1.易于被人理解

R语言数据挖掘实战系列(1)

R语言数据挖掘实战(1) 一.数据挖掘基础 数据挖掘:从数据中"淘金",从大量数据(包括文本)中挖掘出隐含的.未知的.对决策有潜在价值的关系.模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法.工具和过程. 数据挖掘的任务 利用分类与预测.聚类分析.关联规则.时序模式.偏差检测.智能推荐等方法,帮助企业提取数据中蕴含的商业价值,提高企业的竞争力. 数据挖掘建模过程 定义挖掘目标,即决定到底想干什么? 数据取样.抽取一个与挖掘目标相关的样本数据子集.抽取数据的

《数据挖掘:R语言实战》第二章 数据概览

2.1 n*m数据集 在n*m表格形式的数据集中,n代表数据的行,即观测点的数量:m代表列,即变量的数量:n*m为数据的维度. 一般来说,当拿到一份数据时,最先做的往往就是查看数据集的观测样本数.变量数,以及这些变量的实际含义,以此对数据集的庞大程度和各变量的相对重要性做到心中有数.这对选取何种数据挖掘算法,以及在这之前应该抽取多少及哪些变量及样本纳入建模都有重要的先导作用. 2.2 数据的分类 2.2.1 一般的数据分类 定量数据:连续型数据和离散型数据 定性数据:定类数据.定序数据.定距数据

[数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现

聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记录)的集合,将这些对象划分为多个组或者“聚簇”,从而使同组内的对象间比较相似而不同组对象间差异比较大:换言之,聚类算法就是将相似的对象放到同一个聚簇中,而将不相似的对象放到不同的聚簇中.由于在聚类过程中不使用到类别标签,所以相似性的概念要基于对象的属性进行定义.应用不同则相似性规则和聚类算法一般不太