【CF883B】Berland Army 拓扑排序

【CF883B】Berland Army

题意:给出n个点,m条有向边,有的点的点权已知,其余的未知,点权都在1-k中。先希望你确定出所有点的点权,满足:

对于所有边a->b,a的点权>b的点权
对于i=1..k,至少有一个点的点权为i

n,m,k<=100000

题解:像菜肴制作一样奇怪的拓扑排序题,直接上方法吧,不会证。

先正反跑两边拓扑排序,得出每个点点权的下界Li和上界Ri。

将所有点按上界从小到大排序,然后枚举权值i。将所有上界为i的点都扔到堆中,再从堆里取出下界最大的那个点,将其权值赋为i。再找出所有下界为i的点,将他们的权值也都赋为i即可。

#include <cstdio>
#include <cstring>
#include <utility>
#include <queue>
#include <vector>
#define mp(A,B) make_pair(A,B)
using namespace std;
const int maxn=200010;
typedef pair<int,int> pii;
int n,m,k,cnt,flag;
int to[maxn],nxt[maxn],head[maxn],pa[maxn],pb[maxn],v[maxn],L[maxn],R[maxn],d[maxn],ans[maxn];
vector<int> p[maxn];
vector<int>::iterator it;
queue<int> q;
priority_queue<pii> pq;
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)	f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+(gc^‘0‘),gc=getchar();
	return ret*f;
}
inline void add(int a,int b)
{
	to[cnt]=b,nxt[cnt]=head[a],head[a]=cnt++;
}
int main()
{
	n=rd(),m=rd(),k=rd();
	int i,u;
	for(i=1;i<=n;i++)
	{
		v[i]=rd();
		if(!v[i])	L[i]=1,R[i]=k;
		else	L[i]=R[i]=v[i];
	}
	memset(head,-1,sizeof(head)),cnt=0;
	for(i=1;i<=m;i++)	pa[i]=rd(),pb[i]=rd(),d[pb[i]]++,add(pa[i],pb[i]);
	for(i=1;i<=n;i++)	if(!d[i])	q.push(i);
	while(!q.empty())
	{
		u=q.front(),q.pop();
		for(i=head[u];i!=-1;i=nxt[i])
		{
			d[to[i]]--,R[to[i]]=min(R[to[i]],R[u]-1);
			if(!d[to[i]])	q.push(to[i]);
		}
	}
	for(i=1;i<=n;i++)	if(d[i])	return puts("-1"),0;
	memset(head,-1,sizeof(head)),cnt=0;
	for(i=1;i<=m;i++)	d[pa[i]]++,add(pb[i],pa[i]);
	for(i=1;i<=n;i++)	if(!d[i])	q.push(i);
	while(!q.empty())
	{
		u=q.front(),q.pop();
		for(i=head[u];i!=-1;i=nxt[i])
		{
			d[to[i]]--,L[to[i]]=max(L[to[i]],L[u]+1);
			if(!d[to[i]])	q.push(to[i]);
		}
	}
	for(i=1;i<=n;i++)	if(d[i]||L[i]>R[i])	return puts("-1"),0;
	for(i=1;i<=n;i++)	p[R[i]].push_back(i);
	for(i=k;i>=1;i--)
	{
		for(it=p[i].begin();it!=p[i].end();it++)	pq.push(mp(L[*it],*it));
		if(pq.empty())	return puts("-1"),0;
		u=pq.top().second,pq.pop(),ans[u]=i;
		while(!pq.empty())
		{
			u=pq.top().second;
			if(L[u]<i)	break;
			pq.pop(),ans[u]=i;
		}
	}
	for(i=1;i<=n;i++)	printf("%d ",ans[i]);
	return 0;
}
时间: 2024-11-01 23:34:38

【CF883B】Berland Army 拓扑排序的相关文章

Codeforces Beta Round #29 (Div. 2, Codeforces format) C. Mail Stamps 离散化拓扑排序

C. Mail Stamps Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/problem/29/C Description One day Bob got a letter in an envelope. Bob knows that when Berland's post officers send a letter directly from city «A» to city «B

拓扑排序讲解

在这里我们要说的拓扑排序是有前提的 我们在这里说的拓扑排序是基于有向无环图的!!!. (⊙o⊙)…我所说的有向无环图都知道是什么东西吧.. 如果不知道,我们下面先来来说说什么是有向无环图. 所谓有向无环图,顾名思义是不存在环的有向图(至于有向图是什么不知道的在前面我们有一个图论讲解上都有). 点的入度:以这个点为结束点的边数. 点的出度:以这个点为出发点的边的条数. 拓扑序就是对于一个节点的一个排列,使得(u,v)属于E,那么u一定出现在v的前面.然而拓扑排序就是一个用来求拓扑序的东西. 对于左

CSU 1804: 有向无环图(拓扑排序)

http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在这个时候对答案的贡献就是∑(a1 + a2 + a3 + ... + ai) * bv,其中a是之前遍历到的点,v是当前遍历的点. 这样想之后就很简单了.类似于前缀和,每次遍历到一个v点,就把a[u]加给a[v],然后像平时的拓扑排序做就行了. 1 #include <bits/stdc++.h>

7-9-有向图无环拓扑排序-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版

课本源码部分 第7章  图 - 有向无环图拓扑排序 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接??? <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接??? <数据结构>课本源码合辑        习题集全解析  链接??? <数据结构题集>习题解析合辑        本源码引入的文件  链接? Status.h.SequenceStack.c.ALGraph.c    

hihoCoder 1175:拓扑排序二

题目链接: http://hihocoder.com/problemset/problem/1175 题目难度:一星级(简单题) 今天闲来无事,决定刷一道水题.结果发现这道水题居然把我卡了将近一个钟头. 最后终于调通了.总结起来,原因只有一个:不够仔细. 思路不用细说了,就是拓扑排序的简单应用.然而,一些不起眼的细节才是让你掉坑里的真正原因. 猜猜哪儿可能出bug? // A simple problem, but you can't be too careful with it. #inclu

hdu1285(拓扑排序)

这道题要求没有输赢关系的两个元素必须按照升序输出,有输赢关系的,赢得在输的前面,所以用队列或者栈来降低时间复杂度的优化过的拓扑排序会出错. 比如这组输入 5 3 1 2 2 3 4 5 至少我写的两种拓扑排序都wa了.但是不用队列或者栈来优化的话, 1.每次都从头至尾扫描一遍,找到一个没标记过的节点, 2.将它标记 3.然后删除从它出来的每条边. 重复这三个操作,加标记的次序,就是题目要的答案. 下面的代码中用到了队列,但只是用来保存答案而已.并没有用它优化的意思. #include <iost

uva 10305 Ordering Tasks(拓扑排序)

拓扑排序,不用判断是否有环,dfs挺简单的 代码: #include<stdio.h> #include<string.h> #include<stdlib.h> int map[105][105]; int visit[105]; int c[105]; int n,m,t; void dfs(int x) { visit[x] = 1; for(int i=1; i<=n; i++) { if(!visit[i]&&map[i][x]==1)

NOJ 2015年陕西省程序设计竞赛网络预赛(正式赛)(忙碌的选课系统-拓扑排序注意重边)

D - 忙碌的选课系统 Time Limit: 10000 ms        Memory Limit: 65536 KB Submit Description 每学期末,都是万众瞩目的选课时间,由于人数过多,某学校的服务器常常被无数的学生挤的爆掉,这是,教务系统大人说,你们选个课都这么慢,居然还怪我们.于是,每次教务系统都会在服务器快要瘫痪前关闭它.在无数学生的强烈抗议下,教务系统妥协了,再给每个人一次机会,但他让我们用最快的方式决定该选的课程,选上后就退出. 这让大一学渣狗犯了难,在新的选

POJ1420 Spreadsheet(拓扑排序)注意的是超内存

Spreadsheet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 617   Accepted: 290 Description In 1979, Dan Bricklin and Bob Frankston wrote VisiCalc, the first spreadsheet application. It became a huge success and, at that time, was the ki