洛谷 [P1182] 数列分段

这是一道典型的二分答案问题(最大值最小,最小值最大)关键是对于细节的处理。
二分的框架:

//l=max{num[i]},r=sum{num[i]}
while(l<=r){
        int m=(l+r)>>1;
        if(chk(m)){
            r=m-1;
        }else l=m+1;
    }
    cout<<l;

二分的框架是普遍使用的,关键是检验函数的设计,此处的检验函数的含义为: 是否存在一种合法的划分,使得每段的最大值都不大于m。
设计好了检验函数,就要思考l与r的转移:若存在这种合法的划分,说明m偏大,r=m-1;反之,l=m+1.
此处应注意l的初始值为num中的最大值。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int read(){
    int rv=0,fh=1;
    char c=getchar();
    while(c<'0'||c>'9'){
        if(c=='-') fh=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9'){
        rv=(rv<<1)+(rv<<3)+c-'0';
        c=getchar();
    }
    return fh*rv;
}
int n,m,num[100005],pre[100005];
bool chk(int x){
    int tot=0,last=0;
    for(int i=1;i<=n;i++){
        if((pre[i]-pre[last])>x){
            tot++;
            last=i-1;
        }
    }
    tot++;
    if(tot<=m) return 1;
    else return 0;
}
int main(){
    freopen("in.txt","r",stdin);
    n=read();m=read();
    int l=1,r,m=0;
    for(int i=1;i<=n;i++){
        num[i]=read();
        l=max(l,num[i]);
        pre[i]=pre[i-1]+num[i];
    }
    r=pre[n];
    while(l<=r){
        int m=(l+r)>>1;
        if(chk(m)){
            r=m-1;
        }else l=m+1;
    }
    cout<<l;
    int t;
    fclose(stdin);
    return 0;
}
时间: 2024-10-10 06:26:00

洛谷 [P1182] 数列分段的相关文章

洛谷P1182 数列分段Section II 二分答案

洛谷P1182 数列分段Section II 二分答案 题意:将 n 个 数 分为 m段 求一种方案,使这m段中最大的和 最小 额..可能有点拗口,其实就是说每一种方案,都有对应的 每段和的最大值,要求一种方案,使最大值最小 题解 :二分答案 mid为分成的最大值, 然后O(n) 判断 答案 是否可行 贪心的做下去,如果再加上就要超过了,那就新开一段 最后判断开的段数是否小于 m 1.注意要判断 如果当前这个值大于 mid,一个值就已经大于 mid了,那就直接退出了,否则 ,这个值也只会单独算为

洛谷P1182数列分段

题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列4 2 4 5 1要分成3段 将其如下分段: [4 2][4 5][1] 第一段和为6,第2段和为9,第3段和为1,和最大值为9. 将其如下分段: [4][2 4][5 1] 第一段和为4,第2段和为6,第3段和为6,和最大值为6. 并且无论如何分段,最大值不会小于6. 所以可以得到要将数列4 2 4 5 1要分成3段,每段和的最大值最小为6. 输

洛谷 P1182 数列分段Section II Label:贪心

题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列4 2 4 5 1要分成3段 将其如下分段: [4 2][4 5][1] 第一段和为6,第2段和为9,第3段和为1,和最大值为9. 将其如下分段: [4][2 4][5 1] 第一段和为4,第2段和为6,第3段和为6,和最大值为6. 并且无论如何分段,最大值不会小于6. 所以可以得到要将数列4 2 4 5 1要分成3段,每段和的最大值最小为6. 输

洛谷 P1181 数列分段Section I

题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成连续的若干段,并且每段和不超过M(可以等于M),问最少能将其分成多少段使得满足要求. 输入输出格式 输入格式: 输入文件divide_a.in的第1行包含两个正整数N,M,表示了数列A[i]的长度与每段和的最大值,第2行包含N个空格隔开的非负整数A[i],如题目所述. 输出格式: 输出文件divide_a.out仅包含一个正整数,输出最少划分的段数. 输入输出样例 输入样例#1: 5 6 4 2 4 5 1 输出样例#1: 3 说

P1182 数列分段Section II

P1182 数列分段Section II 题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列4 2 4 5 1要分成3段 将其如下分段: [4 2][4 5][1] 第一段和为6,第2段和为9,第3段和为1,和最大值为9. 将其如下分段: [4][2 4][5 1] 第一段和为4,第2段和为6,第3段和为6,和最大值为6. 并且无论如何分段,最大值不会小于6. 所以可以得到要将数列4 2 4 5

洛谷——P1062 数列

洛谷——P1062 数列 题目描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,13,… (该序列实际上就是:3^0,3^1,3^0+3^1,3^2,3^0+3^2,3^1+3^2,3^0+3^1+3^2,…) 请你求出这个序列的第N项的值(用10进制数表示). 例如,对于k=3,N=100,正确答案应该是981. 输入输出格式 输入格式: 输入文件只有1行,为2个正整数,用一个

P1182 数列分段`Section II`

P1182 数列分段`Section II` 二分答案 初始设l=0,r=1e9 然后二分答案,每次在数列中跑一遍判断是否合法即可. 复杂度 O(n log1e9) (真的要改掉我不检查就交的坏习惯qaq) #include<cstdio> #include<cstring> #include<cctype> using namespace std; inline int Int(){ char c=getchar(); int x=0; while(!isdigit(

luogu P1182 数列分段Section II

题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列4 2 4 5 1要分成3段 将其如下分段: [4 2][4 5][1] 第一段和为6,第2段和为9,第3段和为1,和最大值为9. 将其如下分段: [4][2 4][5 1] 第一段和为4,第2段和为6,第3段和为6,和最大值为6. 并且无论如何分段,最大值不会小于6. 所以可以得到要将数列4 2 4 5 1要分成3段,每段和的最大值最小为6. 输

洛谷P1062 数列 [2017年6月计划 数论03]

P1062 数列 题目描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,13,… (该序列实际上就是:3^0,3^1,3^0+3^1,3^2,3^0+3^2,3^1+3^2,3^0+3^1+3^2,…) 请你求出这个序列的第N项的值(用10进制数表示). 例如,对于k=3,N=100,正确答案应该是981. 输入输出格式 输入格式: 输入文件只有1行,为2个正整数,用一个空格隔开