特征检测和特征匹配方法

一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点。计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要。这篇文章我总结了视觉领域最常用的几种特征点以及特征匹配的方法。

在计算机视觉领域,兴趣点(也称关键点或特征点)的概念已经得到了广泛的应用, 包括目标识别、 图像配准、 视觉跟踪、 三维重建等。 这个概念的原理是, 从图像中选取某些特征点并对图像进行局部分析,而非观察整幅图像。 只要图像中有足够多可检测的兴趣点,并且这些兴趣点各不相同且特征稳定, 能被精确地定位,上述方法就十分有效。

以下是实验用的图像:第一幅是手机抓拍的风景图,第二幅是遥感图像。

1.SURF

特征检测的视觉不变性是一个非常重要的概念。 但是要解决尺度不变性问题,难度相当大。 为解决这一问题,计算机视觉界引入了尺度不变特征的概念。
它的理念是, 不仅在任何尺度下拍摄的物体都能检测到一致的关键点,而且每个被检测的特征点都对应一个尺度因子。
理想情况下,对于两幅图像中不同尺度的的同一个物体点, 计算得到的两个尺度因子之间的比率应该等于图像尺度的比率。近几年,
人们提出了多种尺度不变特征,本节介绍其中的一种:SURF特征。 SURF全称为“加速稳健特征”(Speeded Up Robust
Feature),我们将会看到,它们不仅是尺度不变特征,而且是具有较高计算效率的特征。

我们首先进行常规的特征提取和特征点匹配,看看效果如何。

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include <iostream>  

using namespace cv;
using namespace std;

int main()
{
    Mat image01 = imread("2.jpg", 1);    //右图
    Mat image02 = imread("1.jpg", 1);    //左图
    namedWindow("p2", 0);
    namedWindow("p1", 0);
    imshow("p2", image01);
    imshow("p1", image02);

    //灰度图转换
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    //提取特征点
    SurfFeatureDetector surfDetector(800);  // 海塞矩阵阈值,在这里调整精度,值越大点越少,越精准
    vector<KeyPoint> keyPoint1, keyPoint2;
    surfDetector.detect(image1, keyPoint1);
    surfDetector.detect(image2, keyPoint2);

    //特征点描述,为下边的特征点匹配做准备
    SurfDescriptorExtractor SurfDescriptor;
    Mat imageDesc1, imageDesc2;
    SurfDescriptor.compute(image1, keyPoint1, imageDesc1);
    SurfDescriptor.compute(image2, keyPoint2, imageDesc2);

    //获得匹配特征点,并提取最优配对
    FlannBasedMatcher matcher;
    vector<DMatch> matchePoints;

    matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
    cout << "total match points: " << matchePoints.size() << endl;

    Mat img_match;
    drawMatches(image01, keyPoint1, image02, keyPoint2, matchePoints, img_match);
    namedWindow("match", 0);
    imshow("match",img_match);
    imwrite("match.jpg", img_match);

    waitKey();
    return 0;
}

由上面的特征点匹配的效果来看,匹配的效果还是相当糟糕的,如果我们拿着这样子的匹配结果去实现图像拼接或者物体追踪,效果肯定是极差的。所以我们需要进一步筛选匹配点,来获取优秀的匹配点,这就是所谓的“去粗取精”。这里我们采用了Lowe’s算法来进一步获取优秀匹配点。

为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点,SIFT的作者Lowe提出了比较最近邻距离与次近邻距离的SIFT匹配方式:取一幅图像中的一个SIFT关键点,并找出其与另一幅图像中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离得到的比率ratio少于某个阈值T,则接受这一对匹配点。因为对于错误匹配,由于特征空间的高维性,相似的距离可能有大量其他的错误匹配,从而它的ratio值比较高。显然降低这个比例阈值T,SIFT匹配点数目会减少,但更加稳定,反之亦然。

Lowe推荐ratio的阈值为0.8,但作者对大量任意存在尺度、旋转和亮度变化的两幅图片进行匹配,结果表明ratio取值在0. 4~0. 6 之间最佳,小于0. 4的很少有匹配点,大于0. 6的则存在大量错误匹配点,所以建议ratio的取值原则如下:

ratio=0. 4:对于准确度要求高的匹配;

ratio=0. 6:对于匹配点数目要求比较多的匹配;

ratio=0. 5:一般情况下。

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include <iostream>  

using namespace cv;
using namespace std;

int main()
{

    Mat image01 = imread("g2.jpg", 1);
    Mat image02 = imread("g4.jpg", 1);
    imshow("p2", image01);
    imshow("p1", image02);

    //灰度图转换
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    //提取特征点
    SurfFeatureDetector surfDetector(2000);  // 海塞矩阵阈值,在这里调整精度,值越大点越少,越精准
    vector<KeyPoint> keyPoint1, keyPoint2;
    surfDetector.detect(image1, keyPoint1);
    surfDetector.detect(image2, keyPoint2);

    //特征点描述,为下边的特征点匹配做准备
    SurfDescriptorExtractor SurfDescriptor;
    Mat imageDesc1, imageDesc2;
    SurfDescriptor.compute(image1, keyPoint1, imageDesc1);
    SurfDescriptor.compute(image2, keyPoint2, imageDesc2);

    FlannBasedMatcher matcher;
    vector<vector<DMatch> > matchePoints;
    vector<DMatch> GoodMatchePoints;

    vector<Mat> train_desc(1, imageDesc1);
    matcher.add(train_desc);
    matcher.train();

    matcher.knnMatch(imageDesc2, matchePoints, 2);
    cout << "total match points: " << matchePoints.size() << endl;

    // Lowe‘s algorithm,获取优秀匹配点
    for (int i = 0; i < matchePoints.size(); i++)
    {
        if (matchePoints[i][0].distance < 0.6 * matchePoints[i][1].distance)
        {
            GoodMatchePoints.push_back(matchePoints[i][0]);
        }
    }

    Mat first_match;
    drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    imshow("first_match ", first_match);
    waitKey();
    return 0;
}

为了体现所谓的尺度不变形,我特意加入了额外一组图片来测试

由特征点匹配的效果来看,现在的特征点匹配应该是非常精准了,因为我们已经把不合格的匹配点统统移除出去了。

2.SIFT

SURF算法是SIFT算法的加速版, 而SIFT(尺度不变特征转换, ScaleInvariant Feature Transform)
是另一种著名的尺度不变特征检测法。我们知道,SURF相对于SIFT而言,特征点检测的速度有着极大的提升,所以在一些实时视频流物体匹配上有着很强的应用。而SIFT因为其巨大的特征计算量而使得特征点提取的过程异常花费时间,所以在一些注重速度的场合难有应用场景。但是SIFT相对于SURF的优点就是,由于SIFT基于浮点内核计算特征点,因此通常认为,
SIFT算法检测的特征在空间和尺度上定位更加精确,所以在要求匹配极度精准且不考虑匹配速度的场合可以考虑使用SIFT算法。

SIFT特征检测的代码我们仅需要对上面的SURF代码作出一丁点修改即可。

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include <iostream>  

using namespace cv;
using namespace std;

int main()
{
    Mat image01 = imread("1.jpg", 1);    //右图
    Mat image02 = imread("2.jpg", 1);    //左图
    namedWindow("p2", 0);
    namedWindow("p1", 0);
    imshow("p2", image01);
    imshow("p1", image02);

    //灰度图转换
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    //提取特征点
    SiftFeatureDetector siftDetector(2000);  // 海塞矩阵阈值,在这里调整精度,值越大点越少,越精准
    vector<KeyPoint> keyPoint1, keyPoint2;
    siftDetector.detect(image1, keyPoint1);
    siftDetector.detect(image2, keyPoint2);

    //特征点描述,为下边的特征点匹配做准备
    SiftDescriptorExtractor SiftDescriptor;
    Mat imageDesc1, imageDesc2;
    SiftDescriptor.compute(image1, keyPoint1, imageDesc1);
    SiftDescriptor.compute(image2, keyPoint2, imageDesc2);

    //获得匹配特征点,并提取最优配对
    FlannBasedMatcher matcher;
    vector<DMatch> matchePoints;

    matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
    cout << "total match points: " << matchePoints.size() << endl;

    Mat img_match;
    drawMatches(image01, keyPoint1, image02, keyPoint2, matchePoints, img_match);

    imshow("match",img_match);
    imwrite("match.jpg", img_match);

    waitKey();
    return 0;
}

没有经过点筛选的匹配效果同样糟糕。下面继续采用Lowe‘s的算法选出优秀匹配点。

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include <iostream>  

using namespace cv;
using namespace std;

int main()
{

    Mat image01 = imread("1.jpg", 1);
    Mat image02 = imread("2.jpg", 1);
    imshow("p2", image01);
    imshow("p1", image02);

    //灰度图转换
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    //提取特征点
    SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值,在这里调整精度,值越大点越少,越精准
    vector<KeyPoint> keyPoint1, keyPoint2;
    siftDetector.detect(image1, keyPoint1);
    siftDetector.detect(image2, keyPoint2);

    //特征点描述,为下边的特征点匹配做准备
    SiftDescriptorExtractor SiftDescriptor;
    Mat imageDesc1, imageDesc2;
    SiftDescriptor.compute(image1, keyPoint1, imageDesc1);
    SiftDescriptor.compute(image2, keyPoint2, imageDesc2);

    FlannBasedMatcher matcher;
    vector<vector<DMatch> > matchePoints;
    vector<DMatch> GoodMatchePoints;

    vector<Mat> train_desc(1, imageDesc1);
    matcher.add(train_desc);
    matcher.train();

    matcher.knnMatch(imageDesc2, matchePoints, 2);
    cout << "total match points: " << matchePoints.size() << endl;

    // Lowe‘s algorithm,获取优秀匹配点
    for (int i = 0; i < matchePoints.size(); i++)
    {
        if (matchePoints[i][0].distance < 0.6 * matchePoints[i][1].distance)
        {
            GoodMatchePoints.push_back(matchePoints[i][0]);
        }
    }

    Mat first_match;
    drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    imshow("first_match ", first_match);
    imwrite("first_match.jpg", first_match);
    waitKey();
    return 0;
}

3.ORB

ORB是ORiented Brief的简称,是brief算法的改进版。ORB算法比SIFT算法快100倍,比SURF算法快10倍。在计算机视觉领域有种说法,ORB算法的综合性能在各种测评里较其他特征提取算法是最好的。

ORB算法是brief算法的改进,那么我们先说一下brief算法有什么去缺点。

BRIEF的优点在于其速度,其缺点是:

  • 不具备旋转不变性
  • 对噪声敏感
  • 不具备尺度不变性

而ORB算法就是试图解决上述缺点中1和2提出的一种新概念。值得注意的是,ORB没有解决尺度不变性

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include <iostream>  

using namespace cv;
using namespace std;

int main()
{

    Mat image01 = imread("g2.jpg", 1);
    Mat image02 = imread("g4.jpg", 1);
    imshow("p2", image01);
    imshow("p1", image02);

    //灰度图转换
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    //提取特征点
    OrbFeatureDetector OrbDetector(1000);  // 在这里调整精度,值越小点越少,越精准
    vector<KeyPoint> keyPoint1, keyPoint2;
    OrbDetector.detect(image1, keyPoint1);
    OrbDetector.detect(image2, keyPoint2);

    //特征点描述,为下边的特征点匹配做准备
    OrbDescriptorExtractor OrbDescriptor;
    Mat imageDesc1, imageDesc2;
    OrbDescriptor.compute(image1, keyPoint1, imageDesc1);
    OrbDescriptor.compute(image2, keyPoint2, imageDesc2);

    flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);

    vector<DMatch> GoodMatchePoints;

    Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1);
    flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams());

    // Lowe‘s algorithm,获取优秀匹配点
    for (int i = 0; i < matchDistance.rows; i++)
    {
        if (matchDistance.at<float>(i,0) < 0.6 * matchDistance.at<float>(i, 1))
        {
            DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0));
            GoodMatchePoints.push_back(dmatches);
        }
    }

    Mat first_match;
    drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    imshow("first_match ", first_match);
    imwrite("first_match.jpg", first_match);
    waitKey();
    return 0;
}

4.FAST

FAST(加速分割测试获得特征, Features from Accelerated Segment Test) 。 这种算子专门用来快速检测兴趣点, 只需要对比几个像素,就可以判断是否为关键点。

跟Harris检测器的情况一样, FAST算法源于对构成角点的定义。FAST对角点的定义基于候选特征点周围的图像强度值。 以某个点为中心作一个圆, 根据圆上的像素值判断该点是否为关键点。 如果存在这样一段圆弧, 它的连续长度超过周长的3/4, 并且它上面所有像素的强度值都与圆心的强度值明显不同(全部更黑或更亮) , 那么就认定这是一个关键点。

用这个算法检测兴趣点的速度非常快, 因此十分适合需要优先考虑速度的应用。 这些应用包括实时视觉跟踪、 目标识别等, 它们需要在实

时视频流中跟踪或匹配多个点。

我们使用FastFeatureDetector 进行特征点提取,因为opencv没有提供fast专用的描述子提取器,所以我们借用SiftDescriptorExtractor 来实现描述子的提取。

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include <iostream>  

using namespace cv;
using namespace std;

int main()
{

    Mat image01 = imread("1.jpg", 1);
    Mat image02 = imread("2.jpg", 1);
    imshow("p2", image01);
    imshow("p1", image02);

    //灰度图转换
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    //提取特征点
    FastFeatureDetector Detector(50);  //阈值
    vector<KeyPoint> keyPoint1, keyPoint2;
    Detector.detect(image1, keyPoint1);
    Detector.detect(image2, keyPoint2);

    //特征点描述,为下边的特征点匹配做准备
    SiftDescriptorExtractor   Descriptor;
    Mat imageDesc1, imageDesc2;
    Descriptor.compute(image1, keyPoint1, imageDesc1);
    Descriptor.compute(image2, keyPoint2, imageDesc2);

    BruteForceMatcher< L2<float> > matcher;
    vector<vector<DMatch> > matchePoints;
    vector<DMatch> GoodMatchePoints;

    vector<Mat> train_desc(1, imageDesc1);
    matcher.add(train_desc);
    matcher.train();

    matcher.knnMatch(imageDesc2, matchePoints, 2);
    cout << "total match points: " << matchePoints.size() << endl;

    // Lowe‘s algorithm,获取优秀匹配点
    for (int i = 0; i < matchePoints.size(); i++)
    {
        if (matchePoints[i][0].distance < 0.6 * matchePoints[i][1].distance)
        {
            GoodMatchePoints.push_back(matchePoints[i][0]);
        }
    }

    Mat first_match;
    drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    imshow("first_match ", first_match);
    imwrite("first_match.jpg", first_match);
    waitKey();
    return 0;
}

如果我们把描述子换成SurfDescriptorExtractor,即FastFeatureDetector + SurfDescriptorExtractor的组合,看看效果

可以看出,这种组合下的特征点匹配并不精确。

如果我们把描述子换成SurfDescriptorExtractor,即FastFeatureDetector + BriefDescriptorExtractor 的组合,看看效果

速度虽快,但是精度却差强人意。

看到这里可能很多人会有疑惑:为什么FAST特征点可以用所以我们借用SiftDescriptorExtractor或者其他描述子提取器进行提取?

在这里我说一下自己的理解。要完成特征点的匹配第一个步骤就是找出每幅图像的特征点,这叫做特征检测,比如我们使用FastFeatureDetector、SiftFeatureDetector都是特征检测的模块。我们得到这些图像的特征点后,我们就对这些特征点进行进一步的分析,用一些数学上的特征对其进行描述,如梯度直方图,局部随机二值特征等。所以在这一步我们可以选择其他描述子提取器对这些点进行特征描述,进而完成特征点的精确匹配。

在opencv中,SURF,ORB,SIFT既包含FeatureDetector,又包含 DescriptorExtractor,所以我们使用上述三种算法做特征匹配时,都用其自带的方法配套使用。

除此之外,如果我们相用FAST角点检测并作特征点匹配该怎么办?此时可以使用上述的FastFeatureDetector +
BriefDescriptorExtractor
的方式,这种组合方式其实就是著名的ORB算法。所以特征点检测和特征点匹配是两种不同的步骤,我们只需根据自己项目的需求对这两个步骤的方法随意组合就好。

5.Harris角点

在图像中搜索有价值的特征点时,使用角点是一种不错的方法。 角点是很容易在图像中定位的局部特征, 并且大量存在于人造物体中(例如墙壁、 门、
窗户、 桌子等产生的角点)。 角点的价值在于它是两条边缘线的接合点, 是一种二维特征,可以被精确地定位(即使是子像素级精度)。
与此相反的是位于均匀区域或物体轮廓上的点以及在同一物体的不同图像上很难重复精确定位的点。 Harris特征检测是检测角点的经典方法。

这里仅展示GoodFeaturesToTrackDetector + SiftDescriptorExtractor的组合方式的代码,其他组合不再演示。

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include <iostream>  

using namespace cv;
using namespace std;

int main()
{

    Mat image01 = imread("1.jpg", 1);
    Mat image02 = imread("2.jpg", 1);
    imshow("p2", image01);
    imshow("p1", image02);

    //灰度图转换
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    //提取特征点
    GoodFeaturesToTrackDetector Detector(500);  //最大点数,值越大,点越多
    vector<KeyPoint> keyPoint1, keyPoint2;
    Detector.detect(image1, keyPoint1);
    Detector.detect(image2, keyPoint2);

    //特征点描述,为下边的特征点匹配做准备
    SiftDescriptorExtractor  Descriptor;
    Mat imageDesc1, imageDesc2;
    Descriptor.compute(image1, keyPoint1, imageDesc1);
    Descriptor.compute(image2, keyPoint2, imageDesc2);

    BruteForceMatcher< L2<float> > matcher;
    vector<vector<DMatch> > matchePoints;
    vector<DMatch> GoodMatchePoints;

    vector<Mat> train_desc(1, imageDesc1);
    matcher.add(train_desc);
    matcher.train();

    matcher.knnMatch(imageDesc2, matchePoints, 2);
    cout << "total match points: " << matchePoints.size() << endl;

    // Lowe‘s algorithm,获取优秀匹配点
    for (int i = 0; i < matchePoints.size(); i++)
    {
        if (matchePoints[i][0].distance < 0.6 * matchePoints[i][1].distance)
        {
            GoodMatchePoints.push_back(matchePoints[i][0]);
        }
    }

    Mat first_match;
    drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    imshow("first_match ", first_match);
    imwrite("first_match.jpg", first_match);
    waitKey();
    return 0;
}

匹配相当精准

计算机视觉领域其实还有了很多特征检测的方法,比如HOG、Harr、LBP等,这里就不再叙述了,因为方法都是类似,我们根据自己的需求挑选相应的方法就好了。

转自:http://www.cnblogs.com/skyfsm/p/7401523.html

时间: 2024-08-07 06:37:17

特征检测和特征匹配方法的相关文章

OpenCV探索之路(二十三):特征检测和特征匹配方法汇总

http://www.cnblogs.com/skyfsm/p/7401523.html 一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要.这篇文章我总结了视觉领域最常用的几种特征点以及特征匹配的方法. 在计算机视觉领域,兴趣点(也称关键点或特征点)的概念已经得到了广泛的应用, 包括目标识别. 图像配准. 视觉跟踪. 三维重建等. 这个概念的原理是

Robotics Lab3 ——图像特征匹配、跟踪与相机运动估计

Robotics Lab3 --图像特征匹配.跟踪与相机运动估计 图像特征匹配 图像特征点 携带摄像头的机器人在运动过程中,会连续性地获取多帧图像,辅助其感知周围环境和自身运动.时间序列上相连的两幅或多幅图像,通常存在相同的景物,只是它们在图像中的位置不同.而位置的变换恰恰暗含了相机的运动,这时就需要相邻图像间的相似性匹配. 选取一大块图像区域进行运动估计是不可取的.已知图像在计算机内部是以数字矩阵的形式存储的,[如灰度图的每个元素代表了单个像素的灰度值].而对于点的提取和匹配较为方便,且和数字

OpenCV2:特征匹配及其优化

在OpenCV2简单的特征匹配中对使用OpenCV2进行特征匹配的步骤做了一个简单的介绍,其匹配出的结果是非常粗糙的,在这篇文章中对使用OpenCV2进行匹配的细化做一个简单的总结.主要包括以下几个内容: DescriptorMatcher DMatcher KNN匹配 计算两视图的基础矩阵F,并细化匹配结果 计算两视图的单应矩阵H,并细化匹配结果 DescriptorMatcher 和 DMatcher DescriptorMatcher是匹配特征向量的抽象类,在OpenCV2中的特征匹配方法

图像特征点提取方法对比及特征点匹配方法

特征点提取方法 官网的文档 对特征的理解 Understanding Features harris特征点 Harris Corner Detection Shi-Tomasi特征点 Shi-Tomasi Corner Detector & Good Features to Track FAST特征点  FAST Algorithm for Corner Detection SIFT特征点 Introduction to SIFT (Scale-Invariant Feature Transfo

【特征匹配】SIFT原理之KD树+BBF算法解析

继上一篇中已经介绍了SIFT原理点击打开链接,最后得到了一系列特征点,每个特征点对应一个128维向量.假如现在有两副图片都已经提取到特征点,现在要做的就是匹配上相似的特征点. 相似性查询有两种基本方式:1.范围查询:即给点查询点和查询阈值,从数据集中找出所有与查询点距离小于阈值的点. 2.K近邻查询:给点查询点及正整数K,从数据集中找到与查询点最近的K个数据,当K=1时,就是最近邻查询. 特征匹配算子可以分为两类:1.穷举法:即将数据集中的点与查询点逐一计算距离,如果图1提取到N1个特征点,图2

[翻译]鲁棒的尺度不变特征匹配在遥感图像配准中应用(Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration)

李乔亮,汪国有,刘建国,会员,IEEE,和陈少波 2008年8月7日接收;2008年10月22日和2008年11月27日修改.2009年2月2日首版:当前版本出版于2009年4月17日.本项工作由中国国家基础研究项目60672060资助. 中国湖北省武汉市华中科技大学模式识别与人工智能国家重点实验室,邮编430074(邮箱:[email protected];   [email protected];  [email protected];  [email protected]) 数字对象识别编

特征匹配

计算机视觉课堂笔记 回顾:特征提取中分为点(Harris等),线(Canny算子),区域(MSER)等特征的提取. 相应的特征匹配就会有特征点匹配,直线匹配,曲线匹配,区域匹配. 而在众多研究中以点匹配居多,点匹配的基本原则:利用图像点周围的信息来描述点,如灰度信息,颜色信息,梯度信息等,然后进行 相似性度量. 点匹配典型方法: 基于灰度分布的匹配:Cross-correlation: 基于梯度分布的匹配:SIFT:Daisy descriptor: 其他匹配方法:Eigenvector:ICP

特征提取(Detect)、特征描述(Descriptor)、特征匹配(Match)的通俗解释

特征匹配(Feature Match)是计算机视觉中很多应用的基础,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式来阐述特征匹配这个过程,以及在过程中遇到的一些问题. 概念理解: 假设这样的一个场景,小明和小小明都在看一个图片,但是他们想知道他们看的是否是同一幅图片,于是他们就通过电话描述这个图片,来判断是否是同一个图片.比如说有下面两个图片                对话1: 小白:我的图片里面有五个很明显的特征,分别在图像的上下左右中五个位置. 小黑:我的图片

基于点云几何特征匹配的配准概述

在点云数据只有三维坐标时进行配准,这个时候,我们所能提取到的就只有点云的几何特征,常用的特征包括,点云的曲率,点云中平面四边形的仿射不变性等特征. 事实上不管是什么配准方法,都是基于特征匹配的原理.无论是从图像当中获取额外的辅助的信息,或者只是从三维点云当中提取的几何特征,都是为了更好得抽象出点云的特征以及两个点云之间的对应点.毫无疑问,如果我们能够通过遍历点云的各个点基所对应的变换,肯定能够找到最佳的变换,但是这个计算量是一个天文数字,在实际应用当中是不太可能的.所以人们想出了各种方法试图在减