poj1981 Circle and Points 单位圆覆盖问题

转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

Circle and Points

Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 6850   Accepted: 2443
Case Time Limit: 2000MS

Description

You are given N points in the xy-plane. You have a circle of radius one and move it on the xy-plane, so as to enclose as many of the points as possible. Find how many points can be simultaneously enclosed at the maximum. A point is considered enclosed by a circle when it is inside or on the circle. 
 
Fig 1. Circle and Points

Input

The input consists of a series of data sets, followed by a single line only containing a single character ‘0‘, which indicates the end of the input. Each data set begins with a line containing an integer N, which indicates the number of points in the data set. It is followed by N lines describing the coordinates of the points. Each of the N lines has two decimal fractions X and Y, describing the x- and y-coordinates of a point, respectively. They are given with five digits after the decimal point.

You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0 <= Y <= 10.0. No two points are closer than 0.0001. No two points in a data set are approximately at a distance of 2.0. More precisely, for any two points in a data set, the distance d between the two never satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a data set are simultaneously very close to a single circle of radius one. More precisely, let P1, P2, and P3 be any three points in a data set, and d1, d2, and d3 the distances from an arbitrarily selected point in the xy-plane to each of them respectively. Then it never simultaneously holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3).

Output

For each data set, print a single line containing the maximum number of points in the data set that can be simultaneously enclosed by a circle of radius one. No other characters including leading and trailing spaces should be printed.

Sample Input

3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
0

Sample Output

2
5
5
11

题目就是给你n个点,然后用一个单位圆去覆盖,问最多同时能够覆盖到几个点

对于这个题目,首先很容易想到一种n^3的解法,那就是先枚举两个点,这两个点能够得到一个或者两个单位圆。然后在枚举所有点来统计一遍。

方法比较简单,我就不贴代码了。

对于此题,还有一种O(n^2logn)的解法。

首先以每个点为圆心 ,做一个单位圆,那么被同时覆盖到单位圆的数目最多的地方,就是我们需要求的圆心的地方。

于是,我们可以依次枚举所有圆,然后,对于每一个圆,我们在枚举其他的圆,如果有交点的话,求出两个交点,然后按照极角排序,求出被覆盖次数的最多的圆弧,因为被覆盖次数最多的圆弧也就是目标圆心的位置。

求极角的时候可以利用atan2函数,然后加上或者减去一个acos的角度即可

注意atan2使用方法

  1 /**
  2  * code generated by JHelper
  3  * More info: https://github.com/AlexeyDmitriev/JHelper
  4  * @author xyiyy @https://github.com/xyiyy
  5  */
  6
  7 #include <iostream>
  8 #include <fstream>
  9
 10 //#####################
 11 //Author:fraud
 12 //Blog: http://www.cnblogs.com/fraud/
 13 //#####################
 14 //#pragma comment(linker, "/STACK:102400000,102400000")
 15 #include <iostream>
 16 #include <sstream>
 17 #include <ios>
 18 #include <iomanip>
 19 #include <functional>
 20 #include <algorithm>
 21 #include <vector>
 22 #include <string>
 23 #include <list>
 24 #include <queue>
 25 #include <deque>
 26 #include <stack>
 27 #include <set>
 28 #include <map>
 29 #include <cstdio>
 30 #include <cstdlib>
 31 #include <cmath>
 32 #include <cstring>
 33 #include <climits>
 34 #include <cctype>
 35
 36 using namespace std;
 37 #define mp(X, Y) make_pair(X,Y)
 38 #define rep(X, N) for(int X=0;X<N;X++)
 39
 40 //
 41 // Created by xyiyy on 2015/8/10.
 42 //
 43
 44 #ifndef JHELPER_EXAMPLE_PROJECT_P_HPP
 45 #define JHELPER_EXAMPLE_PROJECT_P_HPP
 46
 47 const double EPS = 1e-9;
 48
 49 double add(double a, double b) {
 50     if (fabs(a + b) < EPS * (fabs(a) + fabs(b)))return 0;
 51     return a + b;
 52 }
 53
 54 class P {
 55 public:
 56     double x, y;
 57
 58     P() { }
 59
 60     P(double x, double y) : x(x), y(y) { }
 61
 62     P  operator+(const P &p) {
 63         return P(add(x, p.x), add(y, p.y));
 64     }
 65
 66     P operator-(const P &p) {
 67         return P(add(x, -p.x), add(y, -p.y));
 68     }
 69
 70     P operator*(const double &d) {
 71         return P(x * d, y * d);
 72     }
 73
 74     P operator/(const double &d) {
 75         return P(x / d, y / d);
 76     }
 77
 78     double dot(P p) {
 79         return add(x * p.x, y * p.y);
 80     }
 81
 82
 83     double abs() {
 84         return sqrt(abs2());
 85     }
 86
 87     double abs2() {
 88         return dot(*this);
 89     }
 90
 91 };
 92
 93
 94
 95 //直线和直线的交点
 96 /*P isLL(P p1,P p2,P q1,P q2){
 97     double d = (q2 - q1).det(p2 - p1);
 98     if(sig(d)==0)return NULL;
 99     return intersection(p1,p2,q1,q2);
100 }*/
101
102
103 //四点共圆判定
104 /*bool onC(P p1,P p2,P p3,P p4){
105     P c = CCenter(p1,p2,p3);
106     if(c == NULL) return false;
107     return add((c - p1).abs2(), -(c - p4).abs2()) == 0;
108 }*/
109
110 //三点共圆的圆心
111
112
113 #endif //JHELPER_EXAMPLE_PROJECT_P_HPP
114
115 const int MAXN = 710;
116 P ps[MAXN];
117 pair<double, bool> arc[MAXN];
118
119 class poj1981 {
120 public:
121     void solve(std::istream &in, std::ostream &out) {
122         int n;
123         P t;
124         while (in >> n && n) {
125             rep(i, n)in >> ps[i].x >> ps[i].y;
126             int ans = 1;
127             rep(i, n) {
128                 int num = 0;
129                 rep(j, n) {
130                     if (i == j)continue;
131                     double d;
132                     if ((d = (ps[i] - ps[j]).abs()) <= 2) {
133                         double a = acos(d / 2);
134                         double b = atan2((ps[j].y - ps[i].y), (ps[j].x - ps[i].x));
135                         arc[num++] = mp(b - a, 1);
136                         arc[num++] = mp(b + a, 0);
137                     }
138                 }
139                 sort(arc, arc + num);
140                 int res = 1;
141                 rep(j, num) {
142                     if (arc[j].second)res++;
143                     else res--;
144                     ans = max(ans, res);
145                 }
146             }
147             out << ans << endl;
148         }
149     }
150 };
151
152 int main() {
153     std::ios::sync_with_stdio(false);
154     std::cin.tie(0);
155     poj1981 solver;
156     std::istream &in(std::cin);
157     std::ostream &out(std::cout);
158     solver.solve(in, out);
159     return 0;
160 }

代码君

时间: 2024-11-08 23:12:30

poj1981 Circle and Points 单位圆覆盖问题的相关文章

poj1981Circle and Points(单位圆覆盖最多的点)

链接 O(n^3)的做法: 枚举任意两点为弦的圆,然后再枚举其它点是否在圆内. 用到了两个函数 atan2反正切函数,据说可以很好的避免一些特殊情况 1 #include <iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<stdlib.h> 6 #include<vector> 7 #include<cmath&g

POJ 1981 Circle and Points 计算几何

题目大意 给出平面上的一些点,求一个单位圆最多能够覆盖多少点. 思路 数据范围300,但是没有用,多组数据就是要卡O(n3),然而常数优化的比较好的话在POJ能过,但是BZ上还是过不了.我们需要寻找一种O(n2logn)的做法. 做法就是枚举每个点,做一个一这个点为圆心的单位圆.之后将所有在这个圆里的点弄出来,以这些点为圆心做单位圆,与开始的单位圆会产生一段圆弧,最后求哪一段圆弧被覆盖的次数最多就是答案. CODE O(n3)水过版 #define _CRT_SECURE_NO_WARNINGS

hdu 1077(单位圆覆盖问题)

Catching Fish Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 1741    Accepted Submission(s): 686 Problem Description Ignatius likes catching fish very much. He has a fishnet whose shape is a c

【POJ 1981 】Circle and Points

当两个点距离小于直径时,由它们为弦确定的一个单位圆(虽然有两个圆,但是想一想知道只算一个就可以)来计算覆盖多少点. #include <cstdio> #include <cmath> #define N 301 #define eps 1e-5 using namespace std; int n,ans,tol; double x[N],y[N],dx,dy; inline double sqr(double x) { return x*x; } inline double d

POJ 1981 Circle and Points

//对于任意一点已经覆盖了一些点的圆,都可以通过对圆进行偏移,以使其在保证已覆盖的点的基础上,覆盖更多的点 //对这偏移进行到极限,就是刚好使两点在圆上 //其实这题的思路和POJ1106是差不多的,只不过在看到聚会范围在[0,10]的时候想到随机算法去了 //还有一种n^2logn的做法,学习了一下圆上弧被覆盖次数的标记 #include<stdio.h> #include<algorithm> #include<math.h> using namespace std

POJ - 1981 :Circle and Points (圆的扫描线) hihocoder1508

题意:给定N个点,然后给定一个半径为R的圆,问这个圆最多覆盖多少个点. 思路:在圆弧上求扫描线. hihocoder1508的代码. #include<bits/stdc++.h> #define pdd pair<double,int> #define f first #define s second #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; const int maxn=200010; co

Java学习之方法重载和方法重写(覆盖)比较

方法重载和方法覆盖 请带着下面两点来看文章: 覆盖即重写,覆盖不等于重载,即重写不等于重载. 覆盖(重写)蕴含继承性,而重载只能在本类中使用,不含继承. 方法名和参数列表的比较 方法覆盖中的方法名和参数 首先创建基类Shape: public class Shape {   public void draw() { System.out.println("Shape.draw()"); } } 子类Circle: public class Circle extends Shape {

orientation of a given circle

sqwswwEEEeUntitled Document 复习提纲 stereographic projection (definition and the way to find a projecting point) calculate square root for a given complex number triangle inequality differentiation of a holomorphic function. (definition, Cauchy-Riemann

【转】计算几何题目推荐

打算转下来好好做计算几何了. 原文地址:http://blog.sina.com.cn/s/blog_49c5866c0100f3om.html 其实也谈不上推荐,只是自己做过的题目而已,甚至有的题目尚未AC,让在挣扎中.之所以推荐计算几何题,是因为,本人感觉ACM各种算法中计算几何算是比较实际的算法,在很多领域有着重要的用途计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板很重要,模板必须高度可靠.3.要注意代码的组织,因为计算几何的题目很容易上两百行