[Sdoi2016]排列计数

问题 A: [Sdoi2016]排列计数

时间限制: 3 Sec  内存限制: 512 MB

题目描述

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 10^9+7 取模。

输入

第一行一个数 T,表示有 T 组数据。

接下来 T 行,每行两个整数 n、m。

T=500000,n≤1000000,m≤1000000

输出

输出 T 行,每行一个数,表示求出的序列数

样例输入

5
1 0
1 1
5 2
100 50
10000 5000

样例输出

0
1
20
578028887
60695423solution:    考试的时候推出来的f[i]表示长度为i的不稳定序列的种类数,f[0]=1,f[1]=0,f[2]=1,f[i]=(f[i-1]+f[i-2])*(i-1)%mod;     剩下的求一下组合数就可以了,记得用逆元,本蒟蒻考试的时候lucas呵呵T了5个点。    
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6 #define mod 1000000007
 7 #define maxn 1000000
 8 int read() {
 9     int s=0,f=1;
10     char ch=getchar();
11     while(ch>‘9‘||ch<‘0‘) {
12         if(ch==‘-‘) {
13             f=-1;
14         }
15         ch=getchar();
16     }
17     while(ch>=‘0‘&&ch<=‘9‘) {
18         s=(s<<1)+(s<<3)+(ch^48);
19         ch=getchar();
20     }
21     return s*f;
22 }
23 int n,T,m;
24 long long f[maxn+5],anv[maxn+5];
25 void init() {
26     f[0]=1,f[1]=0,f[2]=1;
27     anv[1]=1;anv[0]=1;
28     for(int i=3; i<=maxn; ++i) {
29         f[i]=(f[i-1]+f[i-2])*(i-1)%mod;
30     }
31     for(int i=2; i<=maxn; ++i) {
32         anv[i]=(anv[i-1]*i)%mod;
33     }
34 }
35 long long qpow(long long x,int t) {
36     long long ans=1;
37     for(; t; t>>=1,x=(x*x)%mod) {
38         if(t&1) {
39             ans=(ans*x)%mod;
40         }
41     }
42     return ans;
43 }
44 signed main() {
45     T=read();
46     init();
47     for(int i=1; i<=T; ++i) {
48         n=read(),m=read();
49         long long ans=anv[n]*qpow(anv[m],mod-2)%mod*qpow(anv[n-m],mod-2)%mod*f[n-m]%mod;
50         printf("%lld\n",ans);
51     }
52     return 0;
53 }

 
时间: 2024-10-15 15:49:01

[Sdoi2016]排列计数的相关文章

BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. T=500000,n≤1000000,m≤1000000 Output 输出 T 行,每行一个数,表示

【BZOJ4517】[Sdoi2016]排列计数 组合数+错排

[BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. T=500000,n≤1000000,m≤1000000 Output 输出 T 行,每行一个

bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][Status][Discuss] Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. I

数学(错排):BZOJ 4517: [Sdoi2016]排列计数

4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status][Discuss] Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第

BZOJ 4517: [Sdoi2016]排列计数

4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status][Discuss] Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第

[SDOI2016] 排列计数 (组合数学)

[SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7109+7 取模. 输入输出格式 输入格式: 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. 输出格式: 输出 T 行,每行一个数,表示求出的序列数 输入输出样例 输入样例#1: 5 1 0 1 1

[BZOJ4517] [Sdoi2016] 排列计数 (数学)

Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. T=500000,n≤1000000,m≤1000000 Output 输出 T 行,每行一个数,表示求出的序列数 Sample Input 5

SDOI2016排列计数 题解

最近学插头DP学得有点不舒服,然后学什么斯坦纳树也学不动,于是就来写写题解,正好有助于巩固一下所学内容 题意较为简单,就是要求对于一个\(1-n\)的序列的全排列中,正好有\(m\)个位置满足\(a[i]==i\)(称其为"稳定的")的排列个数. 很明显,我们可以先固定\(m\)个位置,使得这些位置都为"稳定的",那么还剩下\(n-m\)个位置.因为只能恰好有\(m\)个稳定的数,所以这\(n-m\)个数必须都不是稳定的.也就是说,这\(n-m\)个数必须都不在它们

Bzoj4517 [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1207  Solved: 733 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. T=5000