Problem Description
As to a permutation p1,p2,?,pn from 1 to n, it is uncomplicated for each 1≤i≤n to calculate (li,ri) meeting the condition that min(pL,pL+1,?,pR)=pi if and only if li≤L≤i≤R≤ri for each 1≤L≤R≤n.
Given the positive integers n, (li,ri) (1≤i≤n), you are asked to calculate the number of possible permutations p1,p2,?,pn from 1 to n, meeting the above condition.
The answer may be very large, so you only need to give the value of answer modulo 109+7.
Input
The input contains multiple test cases.
For each test case:
The first line contains one positive integer n, satisfying 1≤n≤106.
The second line contains n positive integers l1,l2,?,ln, satisfying 1≤li≤i for each 1≤i≤n.
The third line contains n positive integers r1,r2,?,rn, satisfying i≤ri≤n for each 1≤i≤n.
It‘s guaranteed that the sum of n in all test cases is not larger than 3⋅106.
Warm Tips for C/C++: input data is so large (about 38 MiB) that we recommend to use fread() for buffering friendly.
size_t fread(void *buffer, size_t size, size_t count, FILE *stream); // reads an array of count elements, each one with a size of size bytes, from the stream and stores them in the block of memory specified by buffer; the total number of elements successfully read is returned.
Output
For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
Sample Input
3
1 1 3
1 3 3
5
1 2 2 4 5
5 2 5 5 5
Sample Output
Case #1: 2
Case #2: 3
题意:对于一个由1~n组成的排列称为合法的,必须满足这样的条件: 有n个(li,ri),对于每个 i 必须满足 min(pL,pL+1,?,pR)=pi if and only if li≤L≤i≤R≤ri for each 1≤L≤R≤n.
现在给了n个(li,ri)求满足的排列有多少个。
思路:对于每个(li,ri),a[li-1]<a[i]>a[ri+1] ,并且a[i]是a[li]~a[ri]的最小值,那么可以想到:对于区间(1,n)一定有一个最小值,所以一定有一个区间是(1,n)(用X表示),那么这个最小值把区间X分成两部分U和V ,所以一定存在为U和V的区间,如果不存在,那么输出0,令f(X)表示符合条件的区间X的排列数,那么f(X)=f(U)*f(V)*C(U+V+1,U) 【注:C()表示组合数,U 表示区间U的大小】,所以我们只需要从区间(1,n)进行深搜即可,其中因为数据太大取模会用到逆元和组合数。
代码如下:
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> using namespace std; typedef long long LL; const int N=1e6+5; const LL mod=1e9+7; LL fac[N], Inv[N]; /*int Scan()///输入外挂 { int res=0,ch,flag=0; if((ch=getchar())==‘-‘) flag=1; else if(ch>=‘0‘&&ch<=‘9‘) res=ch-‘0‘; while((ch=getchar())>=‘0‘&&ch<=‘9‘) res=res*10+ch-‘0‘; return flag?-res:res; }*/ namespace IO { const int MX = 4e7; //1e7占用内存11000kb char buf[MX]; int c, sz; void begin() { c = 0; sz = fread(buf, 1, MX, stdin); } inline bool read(int &t) { while(c < sz && buf[c] != ‘-‘ && (buf[c] < ‘0‘ || buf[c] > ‘9‘)) c++; if(c >= sz) return false; bool flag = 0; if(buf[c] == ‘-‘) flag = 1, c++; for(t = 0; c < sz && ‘0‘ <= buf[c] && buf[c] <= ‘9‘; c++) t = t * 10 + buf[c] - ‘0‘; if(flag) t = -t; return true; } } void Init(){ fac[0] = Inv[0] = fac[1] = Inv[1] = 1; for(int i=2; i<N; i++) fac[i] = fac[i-1] * i % mod; for(int i=2; i<N; i++) Inv[i] = (mod - mod / i) * Inv[mod % i] % mod; for(int i=2; i<N; i++) Inv[i] = Inv[i] * Inv[i-1] % mod; } LL C(LL n, LL m){ LL ans = fac[n] * Inv[m] % mod* Inv[n-m] %mod; return ans; } int ii; struct Node{ int l,r; int id; }a[N]; bool cmp(const Node s1,const Node s2) { if(s1.l==s2.l) return s1.r>s2.r; return s1.l<s2.l; } LL dfs(int L,int R) { if(a[ii].l!=L || a[ii].r!=R) return 0; int m=a[ii++].id; LL fL=1,fR=1; if(L<=m-1) fL=dfs(L,m-1); if(m+1<=R) fR=dfs(m+1,R); LL c=C(R-L,m-L); return fL*fR%mod*c%mod; } int main() { Init(); int n,Case=1; IO::begin(); while(IO::read(n)) { for(int i=1;i<=n;i++) IO::read(a[i].l); for(int i=1;i<=n;i++) IO::read(a[i].r), a[i].id = i; sort(a+1,a+n+1,cmp); ii=1; LL ans=dfs(1,n); printf("Case #%d: %lld\n",Case++,ans); } return 0; }