[CQOI2013]新Nim游戏 Solution

题目大意:

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。

本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。

如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。

Sol:

我们第一次拿完后,要使得剩下的火柴中不存在异或和为0的子集,否则对方会将先手必败的状态留给我们。

因此我们需要寻求极大的线性无关组,答案即为总和减去极大线性无关组的权值和。

显然存在线性无关组,因此必然存在解。

那么如何求解极大线性无关组呢?

我们能够证明这是一个拟阵,因此只需要从大到小排序,依次贪心的添加到当前集合就可以了。

(之后再加上拟阵的证明。。。)

因此我们采用在线维护线性基的方法判断当前的数能否加入集合。

Code:

#include <cstdio>
#include <cstring>
#include <climits>
#include <algorithm>
using namespace std;

#define N 110
int n;
int a[N], w[N], ins[30], sav[N], top;

int main() {
    scanf("%d", &n);

    register int i, j, k;
    for(i = 1; i <= n; ++i)
        scanf("%d", &a[i]);
    sort(a + 1, a + n + 1);

    long long tot = 0;
    for(i = 1; i <= n; ++i)
        tot += (w[i] = a[i]);

    long long ans = 0;
    for(i = n; i >= 1; --i) {
        for(j = 29; j >= 0; --j) {
            if ((a[i] >> j) & 1) {
                if (!ins[j]) {
                    ins[j] = i;
                    for(k = 1; k <= top; ++k)
                        if ((a[sav[k]] >> j) & 1)
                            a[sav[k]] ^= a[i];
                    sav[++top] = i;
                    break;
                }
                else
                    a[i] ^= a[ins[j]];
            }
        }
        if (a[i])
            ans += w[i];
    }

    printf("%lld", tot - ans);

    return 0;
}
时间: 2024-11-06 07:20:26

[CQOI2013]新Nim游戏 Solution的相关文章

BZOJ 3105: [cqoi2013]新Nim游戏

3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1064  Solved: 624[Submit][Status][Discuss] Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游

3105: [cqoi2013]新Nim游戏 异或高消 &amp;&amp; 拟阵

3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 317[Submit][Status][Discuss] Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏

BZOJ3105: [cqoi2013]新Nim游戏

题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: 1 #include<cstdio> 2 #include<cstdlib> 3 #include<cmath> 4 #include<cstring> 5 #include<algorithm> 6 #include<iostream> 7 #incl

BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一下序,从大到小求. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<queue> 5 #include<cmath> 6 #include<algor

【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

[BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到

BZOJ 3105:[cqoi2013]新Nim游戏

BZOJ 3105:[cqoi2013]新Nim游戏 题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3105 题目大意:在传统的Nim取石子游戏中做了改变:两人刚开始可以取走任意堆石子(不包括全部)后进行传统游戏,问先手能否必胜,若必胜求出刚开始最少取多少石子. 线性基 传统Nim游戏先手必胜的前提条件为$a_0 \lxor a_1 \lxor a_2 \lxor ... \lxor a_{n-1} \neq 0$. 故若欲使新Nim游

[CQOI2013]新Nim游戏(线性基)

P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规

[CQOI2013]新Nim游戏(博弈论,线性基)

[CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规则和Nim游

【bzoj3150】 cqoi2013—新Nim游戏

www.lydsy.com/JudgeOnline/problem.php?id=3105 (题目链接) 题意:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样.问是否有先手必胜策略. Solution  动态维护线性基.拟阵证明?我也不会,请自行百度. 代码: // bzoj3105 #include<algorithm> #include&l